Cancer Stem Cells and Treatment of Cancer: An Update and Future Perspectives


Citar

Texto integral

Resumo

:Cancer stem cells (CSCs) play an essential role in tumour progression and metastasis. Stem cell ability of self-renewal enables it to persist over time, thereby contributing to cancer relapse or recurrence and also resistance to current therapies. Therefore, targeting CSCs emerged as a promising strategy of cancer treatment. CSCs exhibit differentiation, self-renewal, and plasticity, they contribute to formation of malignant tumours, also favors, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Coventional cancer treatments predominantly target cancer cells that are not CSCs, CSCs frequently survive, eventually leading to relapse. This article focuses on the development of novel therapeutic strategies that combine conventional treatments and CSC inhibitors to eradicate cancer cells and CSCs, for the better and permanent treatment. However, the diversity of CSCs is a significant obstacle in the development of CSC-targeted therapies, necessitating extensive research for a better understanding and exploration of therapeutic approaches. Future development of CSC-targeted therapies will rely heavily on overcoming this obstacle.

Sobre autores

Mudassir Khan

Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology

Email: info@benthamscience.net

Mashal Naeem

Department of Biosciences, COMSATS University

Email: info@benthamscience.net

Sana Chaudary

Department of Biosciences, COMSATS University

Email: info@benthamscience.net

Affan Ahmed

Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB),, National University of Sciences and Technology,

Email: info@benthamscience.net

Aftab Ahmed

School of Biological Sciences, Punjab University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116. doi: 10.1007/s11095-008-9661-9 PMID: 18626751
  2. Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574. doi: 10.1056/NEJM199705293362206 PMID: 9164814
  3. Sonnenschein, C.; Soto, A.M. Theories of carcinogenesis: An emerging perspective. Semin. Cancer Biol., 2008, 18(5), 372-377. doi: 10.1016/j.semcancer.2008.03.012 PMID: 18472276
  4. Baker, S.G.; Kramer, B.S. Paradoxes in carcinogenesis: New opportunities for research directions. BMC Cancer, 2007, 7(1), 151. doi: 10.1186/1471-2407-7-151 PMID: 17683619
  5. Soto, A.M.; Sonnenschein, C. The somatic mutation theory of cancer: Growing problems with the paradigm? BioEssays, 2004, 26(10), 1097-1107. doi: 10.1002/bies.20087 PMID: 15382143
  6. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
  7. Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature., 2001, 414(6859), 105-111.
  8. Marzagalli, M.; Fontana, F.; Raimondi, M.; Limonta, P. Cancer stem cells—Key players in tumor relapse. Cancers., 2021, 13(3), 376. doi: 10.3390/cancers13030376 PMID: 33498502
  9. Li, Y.; Laterra, J. Cancer stem cells: Distinct entities or dynamically regulated phenotypes? Cancer Res., 2012, 72(3), 576-580. doi: 10.1158/0008-5472.CAN-11-3070 PMID: 22298594
  10. Cruz, M.H.; Sidén, Å.; Calaf, G.M.; Delwar, Z.M.; Yakisich, J.S. The stemness phenotype model. ISRN Oncol., 2012, 2012, 1-10. doi: 10.5402/2012/392647 PMID: 22928120
  11. Vermeulen, L.; de Sousa e Melo, F.; Richel, D.J.; Medema, J.P. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol., 2012, 13(2), e83-e89. doi: 10.1016/S1470-2045(11)70257-1 PMID: 22300863
  12. Kim, E.; Davidson, L.A.; Zoh, R.S.; Hensel, M.E.; Patil, B.S.; Jayaprakasha, G.K.; Callaway, E.S.; Allred, C.D.; Turner, N.D.; Weeks, B.R.; Chapkin, R.S. Homeostatic responses of colonic LGR5 + stem cells following acute in vivo exposure to a genotoxic carcinogen. Carcinogenesis, 2016, 37(2), 206-214. doi: 10.1093/carcin/bgv250 PMID: 26717997
  13. Fayi, M.A.; Alamri, A.; Rajagopalan, P. IOX-101 Reverses drug resistance through suppression of Akt/mTOR/NF-κB signaling in cancer stem cell-like, sphere-forming NSCLC cell. Oncol. Res., 2020, 28(2), 177-189. doi: 10.3727/096504019X15746768080428 PMID: 31771696
  14. Deng, J.; Bai, X.; Feng, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer, 2019, 19(1), 618. doi: 10.1186/s12885-019-5824-9 PMID: 31234823
  15. Khan, P.; Bhattacharya, A.; Sengupta, D.; Banerjee, S.; Adhikary, A.; Das, T. Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci. Rep., 2019, 9(1), 16913. doi: 10.1038/s41598-019-53134-0 PMID: 31729456
  16. Paramanantham, A.; Kim, M.J.; Jung, E.J.; Kim, H.J.; Chang, S.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, G.S.; Lee, W.S. Anthocyanins isolated from vitis coignetiae pulliat enhances cisplatin sensitivity in MCF-7 human breast cancer cells through inhibition of Akt and NF-κB activation. Molecules, 2020, 25(16), 3623. doi: 10.3390/molecules25163623 PMID: 32784919
  17. Su, C.; Zhang, J.; Yarden, Y.; Fu, L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct. Target. Ther., 2021, 6(1), 109. doi: 10.1038/s41392-021-00499-2 PMID: 33678805
  18. Martins-Neves, S.R.; Cleton-Jansen, A.M.; Gomes, C.M.F. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacol. Res., 2018, 137, 193-204. doi: 10.1016/j.phrs.2018.10.011 PMID: 30316903
  19. Bae, J.H.; Park, S.H.; Yang, J.H.; Yang, K.; Yi, J.M. Stem cell-like gene expression signature identified in ionizing radiation-treated cancer cells. Gene, 2015, 572(2), 285-291. doi: 10.1016/j.gene.2015.08.005 PMID: 26255092
  20. Najafi, M.; Mortezaee, K.; Ahadi, R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci., 2019, 231, 116520. doi: 10.1016/j.lfs.2019.05.076 PMID: 31158379
  21. Tanei, T.; Morimoto, K.; Shimazu, K.; Kim, S.J.; Tanji, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin. Cancer Res., 2009, 15(12), 4234-4241. doi: 10.1158/1078-0432.CCR-08-1479 PMID: 19509181
  22. van den Hoogen, C.; van der Horst, G.; Cheung, H.; Buijs, J.T.; Lippitt, J.M.; Guzmán-Ramírez, N.; Hamdy, F.C.; Eaton, C.L.; Thalmann, G.N.; Cecchini, M.G.; Pelger, R.C.M.; van der Pluijm, G. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res., 2010, 70(12), 5163-5173. doi: 10.1158/0008-5472.CAN-09-3806 PMID: 20516116
  23. Singh, S.; Arcaroli, J.; Chen, Y.; Thompson, D.C.; Messersmith, W.; Jimeno, A.; Vasiliou, V. ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-catenin, Notch and PI3K/Akt signaling pathways. PLoS One, 2015, 10(5), e0121648. doi: 10.1371/journal.pone.0121648 PMID: 25950950
  24. Sullivan, J.P.; Spinola, M.; Dodge, M.; Raso, M.G.; Behrens, C.; Gao, B.; Schuster, K.; Shao, C.; Larsen, J.E.; Sullivan, L.A.; Honorio, S.; Xie, Y.; Scaglioni, P.P.; DiMaio, J.M.; Gazdar, A.F.; Shay, J.W.; Wistuba, I.I.; Minna, J.D. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res., 2010, 70(23), 9937-9948. doi: 10.1158/0008-5472.CAN-10-0881 PMID: 21118965
  25. Chefetz, I.; Grimley, E.; Yang, K.; Hong, L.; Vinogradova, E.V.; Suciu, R.; Kovalenko, I.; Karnak, D.; Morgan, C.A.; Chtcherbinine, M.; Buchman, C.; Huddle, B.; Barraza, S.; Morgan, M.; Bernstein, K.A.; Yoon, E.; Lombard, D.B.; Bild, A.; Mehta, G.; Romero, I.; Chiang, C.Y.; Landen, C.; Cravatt, B.; Hurley, T.D.; Larsen, S.D.; Buckanovich, R.J. A pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep., 2019, 26(11), 3061-3075.e6. doi: 10.1016/j.celrep.2019.02.032 PMID: 30865894
  26. Hirschmann-Jax, C.; Foster, A.E.; Wulf, G.G.; Nuchtern, J.G.; Jax, T.W.; Gobel, U.; Goodell, M.A.; Brenner, M.K. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci., 2004, 101(39), 14228-14233. doi: 10.1073/pnas.0400067101 PMID: 15381773
  27. Nobili, S.; Lapucci, A.; Landini, I.; Coronnello, M.; Roviello, G.; Mini, E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin. Cancer Biol., 2020, 60, 72-95. doi: 10.1016/j.semcancer.2019.08.006 PMID: 31412294
  28. Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561. doi: 10.3389/fphar.2017.00561 PMID: 28878676
  29. Lathia, J.; Liu, H.; Matei, D. The clinical impact of cancer stem cells. Oncologist, 2020, 25(2), 123-131. doi: 10.1634/theoncologist.2019-0517 PMID: 32043793
  30. Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Reisz, J.A.; Culp-Hill, R.; Nemkov, T.; Pei, S.; Khan, N.; Adane, B.; Ye, H.; Krug, A.; Reinhold, D.; Smith, C.; DeGregori, J.; Pollyea, D.A.; Jordan, C.T. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell, 2018, 34(5), 724-740.e4. doi: 10.1016/j.ccell.2018.10.005 PMID: 30423294
  31. Saraceni, A.F.D.C.F.; Olivieri, D.M.A.P.A. The Time has come for targeted therapies for AML: Lights and shadows. Oncol Ther., 2020, 8(1), 13-32.
  32. Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J.D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell, 2019, 24(1), 25-40. doi: 10.1016/j.stem.2018.11.017 PMID: 30595497
  33. Molina-Peña, R.; Tudon-Martinez, J.C.; Aquines-Gutiérrez, O. A mathematical model of average dynamics in a stem cell hierarchy suggests the combinatorial targeting of cancer stem cells and progenitor cells as a potential strategy against tumor growth. Cancers., 2020, 12(9), 2590. doi: 10.3390/cancers12092590 PMID: 32932755
  34. Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer Stem Cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells, 2021, 10(3), 621. doi: 10.3390/cells10030621 PMID: 33799798
  35. Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ., 2006, 13(7), 1238-1241. doi: 10.1038/sj.cdd.4401872 PMID: 16456578
  36. Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850. doi: 10.1038/nature03319 PMID: 15829953
  37. DeSano, J.T.; Xu, L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J., 2009, 11(4), 682-692. doi: 10.1208/s12248-009-9147-7 PMID: 19842044
  38. Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480. doi: 10.1016/j.cell.2006.10.018 PMID: 17081971
  39. Gaston-Massuet, C.; Andoniadou, C.L.; Signore, M.; Jayakody, S.A.; Charolidi, N.; Kyeyune, R.; Vernay, B.; Jacques, T.S.; Taketo, M.M.; Le Tissier, P.; Dattani, M.T.; Martinez-Barbera, J.P. Increased Wingless ( Wnt ) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl. Acad. Sci., 2011, 108(28), 11482-11487. doi: 10.1073/pnas.1101553108 PMID: 21636786
  40. Kawano, Y.; Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci., 2003, 116(13), 2627-2634. doi: 10.1242/jcs.00623 PMID: 12775774
  41. Martinez, N.J.; Gregory, R.I. MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell, 2010, 7(1), 31-35. doi: 10.1016/j.stem.2010.06.011 PMID: 20621047
  42. Marson, A.; Foreman, R.; Chevalier, B.; Bilodeau, S.; Kahn, M.; Young, R.A.; Jaenisch, R. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 2008, 3(2), 132-135. doi: 10.1016/j.stem.2008.06.019 PMID: 18682236
  43. Qian, S.; Ding, J.; Xie, R.; An, J.; Ao, X.; Zhao, Z.; Sun, J.; Duan, Y.; Chen, Z.; Zhu, B. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem. Biophys. Res. Commun., 2008, 377(2), 668-673. doi: 10.1016/j.bbrc.2008.10.052 PMID: 18948085
  44. Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; Dirbas, F.M.; Somlo, G.; Pera, R.A.R.; Lao, K.; Clarke, M.F. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009, 138(3), 592-603. doi: 10.1016/j.cell.2009.07.011 PMID: 19665978
  45. Greer Card, D.A.; Hebbar, P.B.; Li, L.; Trotter, K.W.; Komatsu, Y.; Mishina, Y.; Archer, T.K. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol., 2008, 28(20), 6426-6438. doi: 10.1128/MCB.00359-08 PMID: 18710938
  46. Lin, S.L.; Chang, D.C.; Chang-Lin, S.; Lin, C.H.; Wu, D.T.S.; Chen, D.T.; Ying, S.Y. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008, 14(10), 2115-2124. doi: 10.1261/rna.1162708 PMID: 18755840
  47. Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; Sun, Q.; Wang, K.; Ba, Y.; Wang, Q.; Wang, D.; Yang, J.; Liu, P.; Xu, T.; Yan, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, 39(1), 133-144. doi: 10.1016/j.molcel.2010.06.010 PMID: 20603081
  48. Khaled, W.T.; Read, E.K.C.; Nicholson, S.E.; Baxter, F.O.; Brennan, A.J.; Came, P.J.; Sprigg, N.; McKenzie, A.N.J.; Watson, C.J. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development, 2007, 134(15), 2739-2750. doi: 10.1242/dev.003194 PMID: 17611223
  49. Korkaya, H.; Liu, S.; Wicha, M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest., 2011, 121(10), 3804-3809. doi: 10.1172/JCI57099 PMID: 21965337
  50. Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322. doi: 10.1016/j.ccr.2012.02.022 PMID: 22439926
  51. Voog, J.; Jones, D.L. Stem cells and the niche: A dynamic duo. Cell Stem Cell, 2010, 6(2), 103-115. doi: 10.1016/j.stem.2010.01.011 PMID: 20144784
  52. Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8. doi: 10.1038/s41392-020-0110-5 PMID: 32296030
  53. Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol., 2019, 7, 16. doi: 10.3389/fcell.2019.00016 PMID: 30834247
  54. Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 2020, 9(7), 1651. doi: 10.3390/cells9071651 PMID: 32660072
  55. Park, C.Y.; Tseng, D.; Weissman, I.L. Cancer stem cell-directed therapies: Recent data from the laboratory and clinic. Mol. Ther., 2009, 17(2), 219-230. doi: 10.1038/mt.2008.254 PMID: 19066601
  56. Beachy, P.A.; Karhadkar, S.S.; Berman, D.M. Tissue repair and stem cell renewal in carcinogenesis. Nature, 2004, 432(7015), 324-331. doi: 10.1038/nature03100 PMID: 15549094
  57. Aramini, B.; Masciale, V.; Grisendi, G.; Bertolini, F.; Maur, M.; Guaitoli, G.; Chrystel, I.; Morandi, U.; Stella, F.; Dominici, M.; Haider, K.H. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers, 2022, 14(4), 976. doi: 10.3390/cancers14040976 PMID: 35205721
  58. Alves, A.L.V.; Gomes, I.N.F.; Carloni, A.C.; Rosa, M.N.; da Silva, L.S.; Evangelista, A.F.; Reis, R.M.; Silva, V.A.O. Role of glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res. Ther., 2021, 12(1), 206. doi: 10.1186/s13287-021-02231-x PMID: 33762015
  59. Bhardwaj, A.; Arora, S.; Prajapati, V.; Singh, S.; Singh, A. Cancer "stemness"- regulating microRNAs: Role, mechanisms and therapeutic potential. Curr. Drug Targets, 2013, 14(10), 1175-1184. doi: 10.2174/13894501113149990190 PMID: 23834145
  60. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  61. Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
  62. Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; Davis, I.D.; de Bono, J.S.; Evans, C.P.; Fizazi, K.; Joshua, A.M.; Kim, C.S.; Kimura, G.; Mainwaring, P.; Mansbach, H.; Miller, K.; Noonberg, S.B.; Perabo, F.; Phung, D.; Saad, F.; Scher, H.I.; Taplin, M.E.; Venner, P.M.; Tombal, B. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med., 2014, 371(5), 424-433. doi: 10.1056/NEJMoa1405095 PMID: 24881730
  63. Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl. Cancer Inst., 2016, 108(7), djv439. doi: 10.1093/jnci/djv439 PMID: 26819347
  64. Eggermont, A.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Nathan, P. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol., 2021, 22(5), 643-654.
  65. Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; Robert, C.; Mortier, L.; Schachter, J.; Schadendorf, D.; Lesimple, T.; Plummer, R.; Ji, R.; Zhang, P.; Mookerjee, B.; Legos, J.; Kefford, R.; Dummer, R.; Kirkwood, J.M. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med., 2017, 377(19), 1813-1823. doi: 10.1056/NEJMoa1708539 PMID: 28891408
  66. Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; Grob, J.J.; Butler, M.O.; Middleton, M.R.; Maio, M.; Atkinson, V.; Queirolo, P.; Gonzalez, R.; Kudchadkar, R.R.; Smylie, M.; Meyer, N.; Mortier, L.; Atkins, M.B.; Long, G.V.; Bhatia, S.; Lebbé, C.; Rutkowski, P.; Yokota, K.; Yamazaki, N.; Kim, T.M.; de Pril, V.; Sabater, J.; Qureshi, A.; Larkin, J.; Ascierto, P.A. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med., 2017, 377(19), 1824-1835. doi: 10.1056/NEJMoa1709030 PMID: 28891423
  67. Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; Chiarion-Sileni, V.; Drucis, K.; Krajsova, I.; Hauschild, A.; Lorigan, P.; Wolter, P.; Long, G.V.; Flaherty, K.; Nathan, P.; Ribas, A.; Martin, A.M.; Sun, P.; Crist, W.; Legos, J.; Rubin, S.D.; Little, S.M.; Schadendorf, D. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med., 2015, 372(1), 30-39. doi: 10.1056/NEJMoa1412690 PMID: 25399551
  68. Albertsen, P.C.; Hanley, J.A.; Fine, J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA, 2005, 293(17), 2095-2101. doi: 10.1001/jama.293.17.2095 PMID: 15870412
  69. Lu-Yao, G.L.; Albertsen, P.C.; Moore, D.F.; Shih, W.; Lin, Y.; DiPaola, R.S.; Barry, M.J.; Zietman, A.; O’Leary, M.; Walker-Corkery, E.; Yao, S.L. Outcomes of localized prostate cancer following conservative management. JAMA, 2009, 302(11), 1202-1209. doi: 10.1001/jama.2009.1348 PMID: 19755699
  70. Shappley, W.V., III; Kenfield, S.A.; Kasperzyk, J.L.; Qiu, W.; Stampfer, M.J.; Sanda, M.G.; Chan, J.M. Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J. Clin. Oncol., 2009, 27(30), 4980-4985. doi: 10.1200/JCO.2008.21.2613 PMID: 19720918
  71. Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; Carles, J.; Mulders, P.F.A.; Basch, E.; Small, E.J.; Saad, F.; Schrijvers, D.; Van Poppel, H.; Mukherjee, S.D.; Suttmann, H.; Gerritsen, W.R.; Flaig, T.W.; George, D.J.; Yu, E.Y.; Efstathiou, E.; Pantuck, A.; Winquist, E.; Higano, C.S.; Taplin, M.E.; Park, Y.; Kheoh, T.; Griffin, T.; Scher, H.I.; Rathkopf, D.E. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med., 2013, 368(2), 138-148. doi: 10.1056/NEJMoa1209096 PMID: 23228172
  72. Wells, S.A., Jr; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; Raue, F.; Frank-Raue, K.; Robinson, B.; Rosenthal, M.S.; Santoro, M.; Schlumberger, M.; Shah, M.; Waguespack, S.G. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid, 2015, 25(6), 567-610. doi: 10.1089/thy.2014.0335 PMID: 25810047
  73. Tannock, I.F. Conventional cancer therapy: Promise broken or promise delayed? Lancet, 1998, 351(S2), SII9-SII16. doi: 10.1016/S0140-6736(98)90327-0 PMID: 9606361
  74. Sordella, R.; Bell, D.W.; Haber, D.A.; Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004, 305(5687), 1163-1167. doi: 10.1126/science.1101637 PMID: 15284455
  75. Arnedos, M.; Soria, J.C.; Andre, F.; Tursz, T. Personalized treatments of cancer patients: A reality in daily practice, a costly dream or a shared vision of the future from the oncology community? Cancer Treat. Rev., 2014, 40(10), 1192-1198. doi: 10.1016/j.ctrv.2014.07.002 PMID: 25441102
  76. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144(5), 646-674.
  77. Andre, F.; Mardis, E.; Salm, M.; Soria, J.C.; Siu, L.L.; Swanton, C. Prioritizing targets for precision cancer medicine. Ann. Oncol., 2014, 25(12), 2295-2303. doi: 10.1093/annonc/mdu478 PMID: 25344359
  78. Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566. doi: 10.1016/j.clinthera.2016.03.026 PMID: 27158009

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024