Cancer Stem Cells and Treatment of Cancer: An Update and Future Perspectives
- Autores: Khan M.1, Naeem M.2, Chaudary S.2, Ahmed A.3, Ahmed A.4
-
Afiliações:
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology
- Department of Biosciences, COMSATS University
- Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB),, National University of Sciences and Technology,
- School of Biological Sciences, Punjab University
- Edição: Volume 19, Nº 10 (2024)
- Páginas: 1312-1320
- Seção: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645448
- DOI: https://doi.org/10.2174/011574888X247548230921063514
- ID: 645448
Citar
Texto integral
Resumo
:Cancer stem cells (CSCs) play an essential role in tumour progression and metastasis. Stem cell ability of self-renewal enables it to persist over time, thereby contributing to cancer relapse or recurrence and also resistance to current therapies. Therefore, targeting CSCs emerged as a promising strategy of cancer treatment. CSCs exhibit differentiation, self-renewal, and plasticity, they contribute to formation of malignant tumours, also favors, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Coventional cancer treatments predominantly target cancer cells that are not CSCs, CSCs frequently survive, eventually leading to relapse. This article focuses on the development of novel therapeutic strategies that combine conventional treatments and CSC inhibitors to eradicate cancer cells and CSCs, for the better and permanent treatment. However, the diversity of CSCs is a significant obstacle in the development of CSC-targeted therapies, necessitating extensive research for a better understanding and exploration of therapeutic approaches. Future development of CSC-targeted therapies will rely heavily on overcoming this obstacle.
Sobre autores
Mudassir Khan
Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology
Email: info@benthamscience.net
Mashal Naeem
Department of Biosciences, COMSATS University
Email: info@benthamscience.net
Sana Chaudary
Department of Biosciences, COMSATS University
Email: info@benthamscience.net
Affan Ahmed
Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB),, National University of Sciences and Technology,
Email: info@benthamscience.net
Aftab Ahmed
School of Biological Sciences, Punjab University
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116. doi: 10.1007/s11095-008-9661-9 PMID: 18626751
- Bailar, J.C., III; Gornik, H.L. Cancer undefeated. N. Engl. J. Med., 1997, 336(22), 1569-1574. doi: 10.1056/NEJM199705293362206 PMID: 9164814
- Sonnenschein, C.; Soto, A.M. Theories of carcinogenesis: An emerging perspective. Semin. Cancer Biol., 2008, 18(5), 372-377. doi: 10.1016/j.semcancer.2008.03.012 PMID: 18472276
- Baker, S.G.; Kramer, B.S. Paradoxes in carcinogenesis: New opportunities for research directions. BMC Cancer, 2007, 7(1), 151. doi: 10.1186/1471-2407-7-151 PMID: 17683619
- Soto, A.M.; Sonnenschein, C. The somatic mutation theory of cancer: Growing problems with the paradigm? BioEssays, 2004, 26(10), 1097-1107. doi: 10.1002/bies.20087 PMID: 15382143
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70. doi: 10.1016/S0092-8674(00)81683-9 PMID: 10647931
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature., 2001, 414(6859), 105-111.
- Marzagalli, M.; Fontana, F.; Raimondi, M.; Limonta, P. Cancer stem cellsKey players in tumor relapse. Cancers., 2021, 13(3), 376. doi: 10.3390/cancers13030376 PMID: 33498502
- Li, Y.; Laterra, J. Cancer stem cells: Distinct entities or dynamically regulated phenotypes? Cancer Res., 2012, 72(3), 576-580. doi: 10.1158/0008-5472.CAN-11-3070 PMID: 22298594
- Cruz, M.H.; Sidén, Å.; Calaf, G.M.; Delwar, Z.M.; Yakisich, J.S. The stemness phenotype model. ISRN Oncol., 2012, 2012, 1-10. doi: 10.5402/2012/392647 PMID: 22928120
- Vermeulen, L.; de Sousa e Melo, F.; Richel, D.J.; Medema, J.P. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol., 2012, 13(2), e83-e89. doi: 10.1016/S1470-2045(11)70257-1 PMID: 22300863
- Kim, E.; Davidson, L.A.; Zoh, R.S.; Hensel, M.E.; Patil, B.S.; Jayaprakasha, G.K.; Callaway, E.S.; Allred, C.D.; Turner, N.D.; Weeks, B.R.; Chapkin, R.S. Homeostatic responses of colonic LGR5 + stem cells following acute in vivo exposure to a genotoxic carcinogen. Carcinogenesis, 2016, 37(2), 206-214. doi: 10.1093/carcin/bgv250 PMID: 26717997
- Fayi, M.A.; Alamri, A.; Rajagopalan, P. IOX-101 Reverses drug resistance through suppression of Akt/mTOR/NF-κB signaling in cancer stem cell-like, sphere-forming NSCLC cell. Oncol. Res., 2020, 28(2), 177-189. doi: 10.3727/096504019X15746768080428 PMID: 31771696
- Deng, J.; Bai, X.; Feng, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer, 2019, 19(1), 618. doi: 10.1186/s12885-019-5824-9 PMID: 31234823
- Khan, P.; Bhattacharya, A.; Sengupta, D.; Banerjee, S.; Adhikary, A.; Das, T. Aspirin enhances cisplatin sensitivity of resistant non-small cell lung carcinoma stem-like cells by targeting mTOR-Akt axis to repress migration. Sci. Rep., 2019, 9(1), 16913. doi: 10.1038/s41598-019-53134-0 PMID: 31729456
- Paramanantham, A.; Kim, M.J.; Jung, E.J.; Kim, H.J.; Chang, S.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, G.S.; Lee, W.S. Anthocyanins isolated from vitis coignetiae pulliat enhances cisplatin sensitivity in MCF-7 human breast cancer cells through inhibition of Akt and NF-κB activation. Molecules, 2020, 25(16), 3623. doi: 10.3390/molecules25163623 PMID: 32784919
- Su, C.; Zhang, J.; Yarden, Y.; Fu, L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct. Target. Ther., 2021, 6(1), 109. doi: 10.1038/s41392-021-00499-2 PMID: 33678805
- Martins-Neves, S.R.; Cleton-Jansen, A.M.; Gomes, C.M.F. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacol. Res., 2018, 137, 193-204. doi: 10.1016/j.phrs.2018.10.011 PMID: 30316903
- Bae, J.H.; Park, S.H.; Yang, J.H.; Yang, K.; Yi, J.M. Stem cell-like gene expression signature identified in ionizing radiation-treated cancer cells. Gene, 2015, 572(2), 285-291. doi: 10.1016/j.gene.2015.08.005 PMID: 26255092
- Najafi, M.; Mortezaee, K.; Ahadi, R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci., 2019, 231, 116520. doi: 10.1016/j.lfs.2019.05.076 PMID: 31158379
- Tanei, T.; Morimoto, K.; Shimazu, K.; Kim, S.J.; Tanji, Y.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin. Cancer Res., 2009, 15(12), 4234-4241. doi: 10.1158/1078-0432.CCR-08-1479 PMID: 19509181
- van den Hoogen, C.; van der Horst, G.; Cheung, H.; Buijs, J.T.; Lippitt, J.M.; Guzmán-Ramírez, N.; Hamdy, F.C.; Eaton, C.L.; Thalmann, G.N.; Cecchini, M.G.; Pelger, R.C.M.; van der Pluijm, G. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res., 2010, 70(12), 5163-5173. doi: 10.1158/0008-5472.CAN-09-3806 PMID: 20516116
- Singh, S.; Arcaroli, J.; Chen, Y.; Thompson, D.C.; Messersmith, W.; Jimeno, A.; Vasiliou, V. ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-catenin, Notch and PI3K/Akt signaling pathways. PLoS One, 2015, 10(5), e0121648. doi: 10.1371/journal.pone.0121648 PMID: 25950950
- Sullivan, J.P.; Spinola, M.; Dodge, M.; Raso, M.G.; Behrens, C.; Gao, B.; Schuster, K.; Shao, C.; Larsen, J.E.; Sullivan, L.A.; Honorio, S.; Xie, Y.; Scaglioni, P.P.; DiMaio, J.M.; Gazdar, A.F.; Shay, J.W.; Wistuba, I.I.; Minna, J.D. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res., 2010, 70(23), 9937-9948. doi: 10.1158/0008-5472.CAN-10-0881 PMID: 21118965
- Chefetz, I.; Grimley, E.; Yang, K.; Hong, L.; Vinogradova, E.V.; Suciu, R.; Kovalenko, I.; Karnak, D.; Morgan, C.A.; Chtcherbinine, M.; Buchman, C.; Huddle, B.; Barraza, S.; Morgan, M.; Bernstein, K.A.; Yoon, E.; Lombard, D.B.; Bild, A.; Mehta, G.; Romero, I.; Chiang, C.Y.; Landen, C.; Cravatt, B.; Hurley, T.D.; Larsen, S.D.; Buckanovich, R.J. A pan-ALDH1A inhibitor induces necroptosis in ovarian cancer stem-like cells. Cell Rep., 2019, 26(11), 3061-3075.e6. doi: 10.1016/j.celrep.2019.02.032 PMID: 30865894
- Hirschmann-Jax, C.; Foster, A.E.; Wulf, G.G.; Nuchtern, J.G.; Jax, T.W.; Gobel, U.; Goodell, M.A.; Brenner, M.K. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci., 2004, 101(39), 14228-14233. doi: 10.1073/pnas.0400067101 PMID: 15381773
- Nobili, S.; Lapucci, A.; Landini, I.; Coronnello, M.; Roviello, G.; Mini, E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin. Cancer Biol., 2020, 60, 72-95. doi: 10.1016/j.semcancer.2019.08.006 PMID: 31412294
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561. doi: 10.3389/fphar.2017.00561 PMID: 28878676
- Lathia, J.; Liu, H.; Matei, D. The clinical impact of cancer stem cells. Oncologist, 2020, 25(2), 123-131. doi: 10.1634/theoncologist.2019-0517 PMID: 32043793
- Jones, C.L.; Stevens, B.M.; DAlessandro, A.; Reisz, J.A.; Culp-Hill, R.; Nemkov, T.; Pei, S.; Khan, N.; Adane, B.; Ye, H.; Krug, A.; Reinhold, D.; Smith, C.; DeGregori, J.; Pollyea, D.A.; Jordan, C.T. Inhibition of amino acid metabolism selectively targets human leukemia stem cells. Cancer Cell, 2018, 34(5), 724-740.e4. doi: 10.1016/j.ccell.2018.10.005 PMID: 30423294
- Saraceni, A.F.D.C.F.; Olivieri, D.M.A.P.A. The Time has come for targeted therapies for AML: Lights and shadows. Oncol Ther., 2020, 8(1), 13-32.
- Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J.D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell, 2019, 24(1), 25-40. doi: 10.1016/j.stem.2018.11.017 PMID: 30595497
- Molina-Peña, R.; Tudon-Martinez, J.C.; Aquines-Gutiérrez, O. A mathematical model of average dynamics in a stem cell hierarchy suggests the combinatorial targeting of cancer stem cells and progenitor cells as a potential strategy against tumor growth. Cancers., 2020, 12(9), 2590. doi: 10.3390/cancers12092590 PMID: 32932755
- Biserova, K.; Jakovlevs, A.; Uljanovs, R.; Strumfa, I. Cancer Stem Cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells, 2021, 10(3), 621. doi: 10.3390/cells10030621 PMID: 33799798
- Eramo, A.; Ricci-Vitiani, L.; Zeuner, A.; Pallini, R.; Lotti, F.; Sette, G.; Pilozzi, E.; Larocca, L.M.; Peschle, C.; De Maria, R. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ., 2006, 13(7), 1238-1241. doi: 10.1038/sj.cdd.4401872 PMID: 16456578
- Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850. doi: 10.1038/nature03319 PMID: 15829953
- DeSano, J.T.; Xu, L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS J., 2009, 11(4), 682-692. doi: 10.1208/s12248-009-9147-7 PMID: 19842044
- Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480. doi: 10.1016/j.cell.2006.10.018 PMID: 17081971
- Gaston-Massuet, C.; Andoniadou, C.L.; Signore, M.; Jayakody, S.A.; Charolidi, N.; Kyeyune, R.; Vernay, B.; Jacques, T.S.; Taketo, M.M.; Le Tissier, P.; Dattani, M.T.; Martinez-Barbera, J.P. Increased Wingless ( Wnt ) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl. Acad. Sci., 2011, 108(28), 11482-11487. doi: 10.1073/pnas.1101553108 PMID: 21636786
- Kawano, Y.; Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci., 2003, 116(13), 2627-2634. doi: 10.1242/jcs.00623 PMID: 12775774
- Martinez, N.J.; Gregory, R.I. MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell, 2010, 7(1), 31-35. doi: 10.1016/j.stem.2010.06.011 PMID: 20621047
- Marson, A.; Foreman, R.; Chevalier, B.; Bilodeau, S.; Kahn, M.; Young, R.A.; Jaenisch, R. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 2008, 3(2), 132-135. doi: 10.1016/j.stem.2008.06.019 PMID: 18682236
- Qian, S.; Ding, J.; Xie, R.; An, J.; Ao, X.; Zhao, Z.; Sun, J.; Duan, Y.; Chen, Z.; Zhu, B. MicroRNA expression profile of bronchioalveolar stem cells from mouse lung. Biochem. Biophys. Res. Commun., 2008, 377(2), 668-673. doi: 10.1016/j.bbrc.2008.10.052 PMID: 18948085
- Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; Dirbas, F.M.; Somlo, G.; Pera, R.A.R.; Lao, K.; Clarke, M.F. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009, 138(3), 592-603. doi: 10.1016/j.cell.2009.07.011 PMID: 19665978
- Greer Card, D.A.; Hebbar, P.B.; Li, L.; Trotter, K.W.; Komatsu, Y.; Mishina, Y.; Archer, T.K. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol., 2008, 28(20), 6426-6438. doi: 10.1128/MCB.00359-08 PMID: 18710938
- Lin, S.L.; Chang, D.C.; Chang-Lin, S.; Lin, C.H.; Wu, D.T.S.; Chen, D.T.; Ying, S.Y. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008, 14(10), 2115-2124. doi: 10.1261/rna.1162708 PMID: 18755840
- Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; Sun, Q.; Wang, K.; Ba, Y.; Wang, Q.; Wang, D.; Yang, J.; Liu, P.; Xu, T.; Yan, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, 39(1), 133-144. doi: 10.1016/j.molcel.2010.06.010 PMID: 20603081
- Khaled, W.T.; Read, E.K.C.; Nicholson, S.E.; Baxter, F.O.; Brennan, A.J.; Came, P.J.; Sprigg, N.; McKenzie, A.N.J.; Watson, C.J. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development, 2007, 134(15), 2739-2750. doi: 10.1242/dev.003194 PMID: 17611223
- Korkaya, H.; Liu, S.; Wicha, M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest., 2011, 121(10), 3804-3809. doi: 10.1172/JCI57099 PMID: 21965337
- Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322. doi: 10.1016/j.ccr.2012.02.022 PMID: 22439926
- Voog, J.; Jones, D.L. Stem cells and the niche: A dynamic duo. Cell Stem Cell, 2010, 6(2), 103-115. doi: 10.1016/j.stem.2010.01.011 PMID: 20144784
- Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8. doi: 10.1038/s41392-020-0110-5 PMID: 32296030
- Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol., 2019, 7, 16. doi: 10.3389/fcell.2019.00016 PMID: 30834247
- Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 2020, 9(7), 1651. doi: 10.3390/cells9071651 PMID: 32660072
- Park, C.Y.; Tseng, D.; Weissman, I.L. Cancer stem cell-directed therapies: Recent data from the laboratory and clinic. Mol. Ther., 2009, 17(2), 219-230. doi: 10.1038/mt.2008.254 PMID: 19066601
- Beachy, P.A.; Karhadkar, S.S.; Berman, D.M. Tissue repair and stem cell renewal in carcinogenesis. Nature, 2004, 432(7015), 324-331. doi: 10.1038/nature03100 PMID: 15549094
- Aramini, B.; Masciale, V.; Grisendi, G.; Bertolini, F.; Maur, M.; Guaitoli, G.; Chrystel, I.; Morandi, U.; Stella, F.; Dominici, M.; Haider, K.H. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers, 2022, 14(4), 976. doi: 10.3390/cancers14040976 PMID: 35205721
- Alves, A.L.V.; Gomes, I.N.F.; Carloni, A.C.; Rosa, M.N.; da Silva, L.S.; Evangelista, A.F.; Reis, R.M.; Silva, V.A.O. Role of glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res. Ther., 2021, 12(1), 206. doi: 10.1186/s13287-021-02231-x PMID: 33762015
- Bhardwaj, A.; Arora, S.; Prajapati, V.; Singh, S.; Singh, A. Cancer "stemness"- regulating microRNAs: Role, mechanisms and therapeutic potential. Curr. Drug Targets, 2013, 14(10), 1175-1184. doi: 10.2174/13894501113149990190 PMID: 23834145
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; Davis, I.D.; de Bono, J.S.; Evans, C.P.; Fizazi, K.; Joshua, A.M.; Kim, C.S.; Kimura, G.; Mainwaring, P.; Mansbach, H.; Miller, K.; Noonberg, S.B.; Perabo, F.; Phung, D.; Saad, F.; Scher, H.I.; Taplin, M.E.; Venner, P.M.; Tombal, B. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med., 2014, 371(5), 424-433. doi: 10.1056/NEJMoa1405095 PMID: 24881730
- Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric antigen receptors modified T-cells for cancer therapy. J. Natl. Cancer Inst., 2016, 108(7), djv439. doi: 10.1093/jnci/djv439 PMID: 26819347
- Eggermont, A.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Nathan, P. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol., 2021, 22(5), 643-654.
- Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; Robert, C.; Mortier, L.; Schachter, J.; Schadendorf, D.; Lesimple, T.; Plummer, R.; Ji, R.; Zhang, P.; Mookerjee, B.; Legos, J.; Kefford, R.; Dummer, R.; Kirkwood, J.M. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med., 2017, 377(19), 1813-1823. doi: 10.1056/NEJMoa1708539 PMID: 28891408
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; Grob, J.J.; Butler, M.O.; Middleton, M.R.; Maio, M.; Atkinson, V.; Queirolo, P.; Gonzalez, R.; Kudchadkar, R.R.; Smylie, M.; Meyer, N.; Mortier, L.; Atkins, M.B.; Long, G.V.; Bhatia, S.; Lebbé, C.; Rutkowski, P.; Yokota, K.; Yamazaki, N.; Kim, T.M.; de Pril, V.; Sabater, J.; Qureshi, A.; Larkin, J.; Ascierto, P.A. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med., 2017, 377(19), 1824-1835. doi: 10.1056/NEJMoa1709030 PMID: 28891423
- Robert, C.; Karaszewska, B.; Schachter, J.; Rutkowski, P.; Mackiewicz, A.; Stroiakovski, D.; Lichinitser, M.; Dummer, R.; Grange, F.; Mortier, L.; Chiarion-Sileni, V.; Drucis, K.; Krajsova, I.; Hauschild, A.; Lorigan, P.; Wolter, P.; Long, G.V.; Flaherty, K.; Nathan, P.; Ribas, A.; Martin, A.M.; Sun, P.; Crist, W.; Legos, J.; Rubin, S.D.; Little, S.M.; Schadendorf, D. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med., 2015, 372(1), 30-39. doi: 10.1056/NEJMoa1412690 PMID: 25399551
- Albertsen, P.C.; Hanley, J.A.; Fine, J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA, 2005, 293(17), 2095-2101. doi: 10.1001/jama.293.17.2095 PMID: 15870412
- Lu-Yao, G.L.; Albertsen, P.C.; Moore, D.F.; Shih, W.; Lin, Y.; DiPaola, R.S.; Barry, M.J.; Zietman, A.; OLeary, M.; Walker-Corkery, E.; Yao, S.L. Outcomes of localized prostate cancer following conservative management. JAMA, 2009, 302(11), 1202-1209. doi: 10.1001/jama.2009.1348 PMID: 19755699
- Shappley, W.V., III; Kenfield, S.A.; Kasperzyk, J.L.; Qiu, W.; Stampfer, M.J.; Sanda, M.G.; Chan, J.M. Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J. Clin. Oncol., 2009, 27(30), 4980-4985. doi: 10.1200/JCO.2008.21.2613 PMID: 19720918
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; Carles, J.; Mulders, P.F.A.; Basch, E.; Small, E.J.; Saad, F.; Schrijvers, D.; Van Poppel, H.; Mukherjee, S.D.; Suttmann, H.; Gerritsen, W.R.; Flaig, T.W.; George, D.J.; Yu, E.Y.; Efstathiou, E.; Pantuck, A.; Winquist, E.; Higano, C.S.; Taplin, M.E.; Park, Y.; Kheoh, T.; Griffin, T.; Scher, H.I.; Rathkopf, D.E. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med., 2013, 368(2), 138-148. doi: 10.1056/NEJMoa1209096 PMID: 23228172
- Wells, S.A., Jr; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; Raue, F.; Frank-Raue, K.; Robinson, B.; Rosenthal, M.S.; Santoro, M.; Schlumberger, M.; Shah, M.; Waguespack, S.G. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid, 2015, 25(6), 567-610. doi: 10.1089/thy.2014.0335 PMID: 25810047
- Tannock, I.F. Conventional cancer therapy: Promise broken or promise delayed? Lancet, 1998, 351(S2), SII9-SII16. doi: 10.1016/S0140-6736(98)90327-0 PMID: 9606361
- Sordella, R.; Bell, D.W.; Haber, D.A.; Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 2004, 305(5687), 1163-1167. doi: 10.1126/science.1101637 PMID: 15284455
- Arnedos, M.; Soria, J.C.; Andre, F.; Tursz, T. Personalized treatments of cancer patients: A reality in daily practice, a costly dream or a shared vision of the future from the oncology community? Cancer Treat. Rev., 2014, 40(10), 1192-1198. doi: 10.1016/j.ctrv.2014.07.002 PMID: 25441102
- Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144(5), 646-674.
- Andre, F.; Mardis, E.; Salm, M.; Soria, J.C.; Siu, L.L.; Swanton, C. Prioritizing targets for precision cancer medicine. Ann. Oncol., 2014, 25(12), 2295-2303. doi: 10.1093/annonc/mdu478 PMID: 25344359
- Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566. doi: 10.1016/j.clinthera.2016.03.026 PMID: 27158009
Arquivos suplementares
