Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities
- 作者: Dortaj H.1, Azarpira N.2, Pakbaz S.3
-
隶属关系:
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences
- Transplant Research Center, Shiraz University of Medical Science
- Department of Laboratory Medicine & Pathobiology, University of Toronto
- 期: 卷 19, 编号 10 (2024)
- 页面: 1303-1311
- 栏目: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645445
- DOI: https://doi.org/10.2174/011574888X257744231009071810
- ID: 645445
如何引用文章
全文:
详细
:In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids
作者简介
Hengameh Dortaj
Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences
编辑信件的主要联系方式.
Email: info@benthamscience.net
Negar Azarpira
Transplant Research Center, Shiraz University of Medical Science
编辑信件的主要联系方式.
Email: info@benthamscience.net
Sara Pakbaz
Department of Laboratory Medicine & Pathobiology, University of Toronto
Email: info@benthamscience.net
参考
- Dunn, M.A.; Rogal, S.S.; Duarte-Rojo, A.; Lai, J.C. Physical function, physical activity, and quality of life after liver transplantation. Liver Transpl., 2020, 26(5), 702-708. doi: 10.1002/lt.25742 PMID: 32128971
- Orcutt, S.T.; Anaya, D.A. Liver resection and surgical strategies for management of primary liver cancer. Cancer Contr., 2018, 25(1) doi: 10.1177/1073274817744621 PMID: 29327594
- Tsochatzis, E.; Coilly, A.; Nadalin, S.; Levistky, J.; Tokat, Y.; Ghobrial, M.; Klinck, J.; Berenguer, M. International liver transplantation consensus statement on end-stage liver disease due to nonalcoholic steatohepatitis and liver transplantation. Transplantation, 2019, 103(1), 45-56. doi: 10.1097/TP.0000000000002433 PMID: 30153225
- Cong, Y.; Han, X.; Wang, Y.; Chen, Z.; Lu, Y.; Liu, T.; Wu, Z.; Jin, Y.; Luo, Y.; Zhang, X. Drug toxicity evaluation based on organ-on-a-chip technology: A review. Micromachines, 2020, 11(4), 381. doi: 10.3390/mi11040381 PMID: 32260191
- Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online, 2020, 19(1), 9. doi: 10.1186/s12938-020-0752-0 PMID: 32050989
- Prior, N.; Inacio, P.; Huch, M. Liver organoids: From basic research to therapeutic applications. Gut, 2019, 68(12), 2228-2237. doi: 10.1136/gutjnl-2019-319256 PMID: 31300517
- Liu, Z.; Takeuchi, M.; Nakajima, M.; Hu, C.; Hasegawa, Y.; Huang, Q.; Fukuda, T. Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology. Acta Biomater., 2017, 50, 178-187. doi: 10.1016/j.actbio.2016.12.020 PMID: 27993637
- Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J. Control. Release, 2021, 332, 460-492. doi: 10.1016/j.jconrel.2021.02.036 PMID: 33675876
- Hofer, M.; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater., 2021, 6(5), 402-420. doi: 10.1038/s41578-021-00279-y PMID: 33623712
- Weston, A.D.; Hood, L. Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. J. Proteome Res., 2004, 3(2), 179-196. doi: 10.1021/pr0499693 PMID: 15113093
- Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; Kuhl, E. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med., 2019, 2(1), 115. doi: 10.1038/s41746-019-0193-y PMID: 31799423
- Breslin, S.; ODriscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today, 2013, 18(5-6), 240-249. doi: 10.1016/j.drudis.2012.10.003 PMID: 23073387
- Langhans, S.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol., 2018, 9, 6. doi: 10.3389/fphar.2018.00006 PMID: 29410625
- Lai, H.; Gong, B.; Yin, J.; Qian, J. 3D printing topographic cues for cell contact guidance: A review. Mater. Des., 2022, 218, 110663. doi: 10.1016/j.matdes.2022.110663
- AlMusawi, S.; Ahmed, M.; Nateri, A.S. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin. Transl. Med., 2021, 11(2), e308. doi: 10.1002/ctm2.308 PMID: 33635003
- Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech., 2019, 12(7), dmm039347. doi: 10.1242/dmm.039347 PMID: 31383635
- Akbari, S.; Arslan, N.; Senturk, S.; Erdal, E. Next-generation liver medicine using organoid models. Front. Cell Dev. Biol., 2019, 7, 345. doi: 10.3389/fcell.2019.00345 PMID: 31921856
- Li, Y.; Tang, P.; Cai, S.; Peng, J.; Hua, G. Organoid based personalized medicine: From bench to bedside. Cell Regen., 2020, 9(1), 21. doi: 10.1186/s13619-020-00059-z PMID: 33135109
- Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1), 25-38. doi: 10.1016/j.stem.2015.12.005 PMID: 26748754
- Saglam-Metiner, P.; Gulce-Iz, S.; Biray-Avci, C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene, 2019, 686, 203-212. doi: 10.1016/j.gene.2018.11.058 PMID: 30481551
- Ogoke, O.; Maloy, M.; Parashurama, N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol. Rev. Camb. Philos. Soc., 2021, 96(1), 179-204. doi: 10.1111/brv.12650 PMID: 33002311
- Wörsdörfer, P; Asahina, I; Sumita, Y; Ergün, S Do not keep it simple: Recent advances in the generation of complex organoids. J Nural Trans., 2020, 127(11), 1569-77. doi: 10.1007/s00702-020-02198-8
- Busfield, J. Documenting the financialisation of the pharmaceutical industry. Soc. Sci. Med., 2020, 258, 113096. doi: 10.1016/j.socscimed.2020.113096 PMID: 32563788
- Rashid, M.B.M.A. Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol., 2021, 26(1), 3-15. doi: 10.1177/2472630320956931 PMID: 32940124
- Gille, C.; Bölling, C.; Hoppe, A.; Bulik, S.; Hoffmann, S.; Hübner, K.; Karlstädt, A.; Ganeshan, R.; König, M.; Rother, K.; Weidlich, M.; Behre, J.; Holzhütter, H.G. HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol., 2010, 6(1), 411. doi: 10.1038/msb.2010.62 PMID: 20823849
- Zhou, Q.; Fan, L.; Li, J. Liver regeneration and tissue engineering. In: Artificial Liver; Springer, 2021; pp. 73-94.
- Lee, S.Y.; Kim, H.J.; Choi, D. Cell sources, liver support systems and liver tissue engineering: Alternatives to liver transplantation. Int. J. Stem Cells, 2015, 8(1), 36-47. doi: 10.15283/ijsc.2015.8.1.36 PMID: 26019753
- Gómez-Lechón, M.J.; Tolosa, L.; Conde, I.; Donato, M.T. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin. Drug Metab. Toxicol., 2014, 10(11), 1553-1568. doi: 10.1517/17425255.2014.967680 PMID: 25297626
- Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.W.; Meredith, J.; Stacey, G.N.; Thraves, P.; Vias, M. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer, 2014, 111(6), 1021-1046. doi: 10.1038/bjc.2014.166 PMID: 25117809
- Bissell, D.M.; Levine, G.A.; Bissell, M.J. Glucose metabolism by adult hepatocytes in primary culture and by cell lines from rat liver. Am. J. Physiol. Cell Physiol., 1978, 234(3), C122-C130. doi: 10.1152/ajpcell.1978.234.3.C122 PMID: 629333
- Young, E.W.K.; Beebe, D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev., 2010, 39(3), 1036-1048. doi: 10.1039/b909900j PMID: 20179823
- Liting, S.; Emanuel, G. Induced pluripotent stem cells are induced pluripotent stem cell-like cells. J. Biomed. Res., 2015, 29(1), 1-2. doi: 10.7555/JBR.29.20140166 PMID: 25745470
- Rashid, S.T.; Corbineau, S.; Hannan, N.; Marciniak, S.J.; Miranda, E.; Alexander, G.; Huang-Doran, I.; Griffin, J.; Ahrlund-Richter, L.; Skepper, J.; Semple, R.; Weber, A.; Lomas, D.A.; Vallier, L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 2010, 120(9), 3127-3136. doi: 10.1172/JCI43122 PMID: 20739751
- Afify, S.M.; Sanchez Calle, A.; Hassan, G.; Kumon, K.; Nawara, H.M.; Zahra, M.H.; Mansour, H.M.; Khayrani, A.C.; Alam, M.J.; Du, J.; Seno, A.; Iwasaki, Y.; Seno, M. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br. J. Cancer, 2020, 122(9), 1378-1390. doi: 10.1038/s41416-020-0792-z PMID: 32203212
- Chen, Y.F.; Tseng, C.Y.; Wang, H.W.; Kuo, H.C.; Yang, V.W.; Lee, O.K. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 2012, 55(4), 1193-1203. doi: 10.1002/hep.24790 PMID: 22095466
- Mallanna, SK; Duncan, SA Differentiation of hepatocytes from pluripotent stem cells. Curr Prot Stem Cell Biol, 2013, 26(1), 4.1-4.13. doi: 10.1002/9780470151808.sc01g04s26
- Schwartz, R.E.; Fleming, H.E.; Khetani, S.R.; Bhatia, S.N. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol. Adv., 2014, 32(2), 504-513. doi: 10.1016/j.biotechadv.2014.01.003 PMID: 24440487
- Hannoun, Z.; Steichen, C.; Dianat, N.; Weber, A.; Dubart-Kupperschmitt, A. The potential of induced pluripotent stem cell derived hepatocytes. J. Hepatol., 2016, 65(1), 182-199. doi: 10.1016/j.jhep.2016.02.025 PMID: 26916529
- Xie, Y.; Yao, J.; Jin, W.; Ren, L.; Li, X. Induction and maturation of hepatocyte-like cells in vitro: Focus on technological advances and challenges. Front. Cell Dev. Biol., 2021, 9, 765980. doi: 10.3389/fcell.2021.765980 PMID: 34901010
- Dedifferentiation, transdifferentiation, and reprogramming: Future directions in regenerative medicine. In: Seminars in reproductive medicine; Eguizabal, C.; Montserrat, N.; Veiga, A.; Belmonte, J.C.I., Eds.; Thieme Medical Publishers, 2013.
- Yang, L.; Li, S.; Hatch, H.; Ahrens, K.; Cornelius, J.G.; Petersen, B.E.; Peck, A.B. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl. Acad. Sci., 2002, 99(12), 8078-8083. doi: 10.1073/pnas.122210699 PMID: 12048252
- Tolosa, L.; Pareja, E.; Gómez-Lechón, M.J. Clinical application of pluripotent stem cells: An alternative cell-based therapy for treating liver diseases? Transplantation, 2016, 100(12), 2548-2557. doi: 10.1097/TP.0000000000001426 PMID: 27495745
- Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(8), 2506-2519. doi: 10.1016/j.bbagen.2014.01.010 PMID: 24418517
- Nuciforo, S.; Heim, M.H. Organoids to model liver disease. JHEP Reports, 2021, 3(1), 100198. doi: 10.1016/j.jhepr.2020.100198 PMID: 33241206
- Bilzer, M.; Roggel, F.; Gerbes, A.L. Role of Kupffer cells in host defense and liver disease. Liver Int., 2006, 26(10), 1175-1186. doi: 10.1111/j.1478-3231.2006.01342.x PMID: 17105582
- Gracia-Sancho, J.; Caparrós, E.; Fernández-Iglesias, A.; Francés, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(6), 411-431. doi: 10.1038/s41575-020-00411-3 PMID: 33589830
- Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of nonalcoholic steatohepatitis: An overview. Hepatol. Commun., 2020, 4(4), 478-492. doi: 10.1002/hep4.1479 PMID: 32258944
- Knight, E.; Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat., 2015, 227(6), 746-756. doi: 10.1111/joa.12257 PMID: 25411113
- Khademhosseini, A.; Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials, 2007, 28(34), 5087-5092. doi: 10.1016/j.biomaterials.2007.07.021 PMID: 17707502
- Badekila, A.K.; Kini, S.; Jaiswal, A.K. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J. Cell. Physiol., 2021, 236(2), 741-762. doi: 10.1002/jcp.29935 PMID: 32657458
- Karsdal, M.A.; Manon-Jensen, T.; Genovese, F.; Kristensen, J.H.; Nielsen, M.J.; Sand, J.M.B.; Hansen, N.U.B.; Bay-Jensen, A.C.; Bager, C.L.; Krag, A.; Blanchard, A.; Krarup, H.; Leeming, D.J.; Schuppan, D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 308(10), G807-G830. doi: 10.1152/ajpgi.00447.2014 PMID: 25767261
- Ye, S.; Boeter, J.W.B.; Penning, L.C.; Spee, B.; Schneeberger, K. Hydrogels for liver tissue engineering. Bioengineering, 2019, 6(3), 59. doi: 10.3390/bioengineering6030059 PMID: 31284412
- Tsou, Y.H.; Khoneisser, J.; Huang, P.C.; Xu, X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact. Mater., 2016, 1(1), 39-55. doi: 10.1016/j.bioactmat.2016.05.001 PMID: 29744394
- Xu, M.; Qin, M.; Cheng, Y.; Niu, X.; Kong, J.; Zhang, X.; Huang, D.; Wang, H. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr. Polym., 2021, 266, 118128. doi: 10.1016/j.carbpol.2021.118128 PMID: 34044944
- Liu, T.; Wang, Y.; Zhong, W.; Li, B.; Mequanint, K.; Luo, G.; Xing, M. Biomedical applications of layer-by-layer self-assembly for cell encapsulation: Current status and future perspectives. Adv. Healthc. Mater., 2019, 8(1), 1800939. doi: 10.1002/adhm.201800939 PMID: 30511822
- Zhang, B.; Li, Y.; Wang, G.; Jia, Z.; Li, H.; Peng, Q.; Gao, Y. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells. J. Mater. Sci. Mater. Med., 2018, 29(5), 49. doi: 10.1007/s10856-018-6058-0 PMID: 29675647
- Krull, R.; Lladó-Maldonado, S.; Lorenz, T.; Demming, S.; Büttgenbach, S. Microbioreactors. In: Microsystems for Pharmatechnology; Springer, 2016; pp. 99-152. doi: 10.1007/978-3-319-26920-7_4
- Polidoro, M.A.; Ferrari, E.; Marzorati, S.; Lleo, A.; Rasponi, M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int., 2021, 41(8), 1744-1761. doi: 10.1111/liv.14942 PMID: 33966344
- Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F.G.; Lim, K.T.; Nagai, M.; Santra, T.S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials, 2022, 280, 121247. doi: 10.1016/j.biomaterials.2021.121247 PMID: 34801251
- Rothbauer, M.; Wartmann, D.; Charwat, V.; Ertl, P. Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol. Adv., 2015, 33(6), 948-961. doi: 10.1016/j.biotechadv.2015.06.006 PMID: 26133396
- Moraes, C.; Mehta, G.; Lesher-Perez, S.C.; Takayama, S. Organs-on-a-chip: A focus on compartmentalized microdevices. Ann. Biomed. Eng., 2012, 40(6), 1211-1227. doi: 10.1007/s10439-011-0455-6 PMID: 22065201
- Fang, X. Microfluidic chip. In: Clinical Molecular Diagnostics; Springer, 2021; pp. 357-375. doi: 10.1007/978-981-16-1037-0_26
- Kulkarni, P.; Parkale, R.; Khare, S.; Kumar, P.; Arya, N. Cell immobilization strategies for tissue engineering: Recent trends and future perspectives. In: Immobilization Strategies; Springer, 2021; pp. 85-139.
- Hajifathaliha, F.; Mahboubi, A.; Bolourchian, N.; Mohit, E.; Nematollahi, L. Multilayer alginate microcapsules for live cell microencapsulation; is there any preference for selecting cationic polymers? Iran. J. Pharm. Res., 2021, 20(2), 173-182. PMID: 34567154
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll., 2021, 120, 106882. doi: 10.1016/j.foodhyd.2021.106882
- Da Silva, K.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the current ECM materials. J. Biomed. Mater. Res. A, 2020, 108(12), 2324-2350. doi: 10.1002/jbm.a.36981 PMID: 32363804
- Moradi, E.; Jalili-Firoozinezhad, S.; Solati-Hashjin, M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater., 2020, 116, 67-83. doi: 10.1016/j.actbio.2020.08.041 PMID: 32890749
- Ahn, J.; Ko, J.; Lee, S.; Yu, J.; Kim, Y.; Jeon, N.L. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv. Drug Deliv. Rev., 2018, 128, 29-53. doi: 10.1016/j.addr.2018.04.001 PMID: 29626551
- Cecen, B.; Bal-Ozturk, A.; Yasayan, G.; Alarcin, E.; Kocak, P.; Tutar, R.; Kozaci, L.D.; Shin, S.R.; Miri, A.K. Selection of natural biomaterials for micro-tissue and organ-on-chip models. J. Biomed. Mater. Res. A, 2022, 110(5), 1147-1165. doi: 10.1002/jbm.a.37353 PMID: 35102687
- Agarwal, T.; Subramanian, B.; Maiti, T.K. Liver tissue engineering: Challenges and opportunities. ACS Biomater. Sci. Eng., 2019, 5(9), 4167-4182. doi: 10.1021/acsbiomaterials.9b00745 PMID: 33417776
- Li, K.; Zhang, G.; Zhang, C.; Yang, J.; Wu, C.; Huo, X. Assessment of in vitro 3D large-scale hepatocyte proliferation culture system and automated and intelligent bioreactor systems. Chinese J Tissue Eng Res., 2022, 26(19), 3100.
- Chen, S.; Wang, J.; Ren, H.; Liu, Y.; Xiang, C.; Li, C.; Lu, S.; Shi, Y.; Deng, H.; Shi, X. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res., 2020, 30(1), 95-97. doi: 10.1038/s41422-019-0261-5 PMID: 31827240
- Tuerxun, K.; He, J.; Ibrahim, I.; Yusupu, Z.; Yasheng, A.; Xu, Q.; Tang, R.; Aikebaier, A.; Wu, Y.; Tuerdi, M.; Nijiati, M.; Zou, X.; Xu, T. Bioartificial livers: A review of their design and manufacture. Biofabrication, 2022, 14(3), 032003. doi: 10.1088/1758-5090/ac6e86 PMID: 35545058
- Zhang, Y.; Lu, J.; Ji, F.; Wang, J.; Pan, X.; Li, L. Bio-artificial liver. In: Artificial Liver; Springer, 2021; pp. 479-504.
- Kryou, C.; Leva, V.; Chatzipetrou, M.; Zergioti, I. Bioprinting for liver transplantation. Bioengineering, 2019, 6(4), 95. doi: 10.3390/bioengineering6040095 PMID: 31658719
- Ma, L.; Wu, Y.; Li, Y.; Aazmi, A.; Zhou, H.; Zhang, B.; Yang, H. Current advances on 3D-bioprinted liver tissue models. Adv. Healthc. Mater., 2020, 9(24), 2001517. doi: 10.1002/adhm.202001517 PMID: 33073522
- Nie, J.; Gao, Q.; Fu, J.; He, Y. Grafting of 3D bioprinting to in vitro drug screening: A review. Adv. Healthc. Mater., 2020, 9(7), 1901773. doi: 10.1002/adhm.201901773 PMID: 32125787
- Han, W.; Wu, Q.; Zhang, X.; Duan, Z. Innovation for hepatotoxicity in vitro research models: A review. J. Appl. Toxicol., 2019, 39(1), 146-162. doi: 10.1002/jat.3711 PMID: 30182494
- Calitz, C. Establishing three-dimensional cell culture models to measure biotransformation and toxicity: North-West University; Campus: Potchefstroom, 2018.
- Ou, X.; Chen, P.; Huang, X.; Li, S.; Liu, B.F. Microfluidic chip electrophoresis for biochemical analysis. J. Sep. Sci., 2020, 43(1), 258-270. doi: 10.1002/jssc.201900758 PMID: 31654552
- Wang, Y.; Wang, H.; Deng, P.; Tao, T.; Liu, H.; Wu, S.; Chen, W.; Qin, J. Modeling human nonalcoholic fatty liver disease (NAFLD) with an organoids-on-a-chip system. ACS Biomater. Sci. Eng., 2020, 6(10), 5734-5743. doi: 10.1021/acsbiomaterials.0c00682 PMID: 33320545
- Kanabekova, P.; Kadyrova, A.; Kulsharova, G. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines, 2022, 13(3), 428. doi: 10.3390/mi13030428 PMID: 35334720
- Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527. doi: 10.1016/j.bbcan.2021.188527 PMID: 33640383
- Zhu, M.; Huang, Y.; Bian, S.; Song, Q.; Zhang, J.; Zheng, W.; Cheng, C. Organoids: Current implications and pharmaceutical applications in liver diseases. Curr. Mol. Pharmacol., 2021, 14(4), 498-508. doi: 10.2174/1874467213666201217115854 PMID: 33334301
- Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A.M.; Liu, X.; Xie, X.; Livermore, C.; Zhang, Y.S.; Zarrinpar, A. Liver-on-a-chip models of fatty liver disease. Hepatology, 2020, 71(2), 733-740. doi: 10.1002/hep.31106 PMID: 31909504
补充文件
