Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities


如何引用文章

全文:

详细

:In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids

作者简介

Hengameh Dortaj

Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

Negar Azarpira

Transplant Research Center, Shiraz University of Medical Science

编辑信件的主要联系方式.
Email: info@benthamscience.net

Sara Pakbaz

Department of Laboratory Medicine & Pathobiology, University of Toronto

Email: info@benthamscience.net

参考

  1. Dunn, M.A.; Rogal, S.S.; Duarte-Rojo, A.; Lai, J.C. Physical function, physical activity, and quality of life after liver transplantation. Liver Transpl., 2020, 26(5), 702-708. doi: 10.1002/lt.25742 PMID: 32128971
  2. Orcutt, S.T.; Anaya, D.A. Liver resection and surgical strategies for management of primary liver cancer. Cancer Contr., 2018, 25(1) doi: 10.1177/1073274817744621 PMID: 29327594
  3. Tsochatzis, E.; Coilly, A.; Nadalin, S.; Levistky, J.; Tokat, Y.; Ghobrial, M.; Klinck, J.; Berenguer, M. International liver transplantation consensus statement on end-stage liver disease due to nonalcoholic steatohepatitis and liver transplantation. Transplantation, 2019, 103(1), 45-56. doi: 10.1097/TP.0000000000002433 PMID: 30153225
  4. Cong, Y.; Han, X.; Wang, Y.; Chen, Z.; Lu, Y.; Liu, T.; Wu, Z.; Jin, Y.; Luo, Y.; Zhang, X. Drug toxicity evaluation based on organ-on-a-chip technology: A review. Micromachines, 2020, 11(4), 381. doi: 10.3390/mi11040381 PMID: 32260191
  5. Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online, 2020, 19(1), 9. doi: 10.1186/s12938-020-0752-0 PMID: 32050989
  6. Prior, N.; Inacio, P.; Huch, M. Liver organoids: From basic research to therapeutic applications. Gut, 2019, 68(12), 2228-2237. doi: 10.1136/gutjnl-2019-319256 PMID: 31300517
  7. Liu, Z.; Takeuchi, M.; Nakajima, M.; Hu, C.; Hasegawa, Y.; Huang, Q.; Fukuda, T. Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology. Acta Biomater., 2017, 50, 178-187. doi: 10.1016/j.actbio.2016.12.020 PMID: 27993637
  8. Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J. Control. Release, 2021, 332, 460-492. doi: 10.1016/j.jconrel.2021.02.036 PMID: 33675876
  9. Hofer, M.; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater., 2021, 6(5), 402-420. doi: 10.1038/s41578-021-00279-y PMID: 33623712
  10. Weston, A.D.; Hood, L. Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. J. Proteome Res., 2004, 3(2), 179-196. doi: 10.1021/pr0499693 PMID: 15113093
  11. Alber, M.; Buganza Tepole, A.; Cannon, W.R.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, W.W.; Perdikaris, P.; Petzold, L.; Kuhl, E. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digit. Med., 2019, 2(1), 115. doi: 10.1038/s41746-019-0193-y PMID: 31799423
  12. Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: The missing link in drug discovery. Drug Discov. Today, 2013, 18(5-6), 240-249. doi: 10.1016/j.drudis.2012.10.003 PMID: 23073387
  13. Langhans, S.A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol., 2018, 9, 6. doi: 10.3389/fphar.2018.00006 PMID: 29410625
  14. Lai, H.; Gong, B.; Yin, J.; Qian, J. 3D printing topographic cues for cell contact guidance: A review. Mater. Des., 2022, 218, 110663. doi: 10.1016/j.matdes.2022.110663
  15. AlMusawi, S.; Ahmed, M.; Nateri, A.S. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin. Transl. Med., 2021, 11(2), e308. doi: 10.1002/ctm2.308 PMID: 33635003
  16. Lancaster, M.A.; Huch, M. Disease modelling in human organoids. Dis. Model. Mech., 2019, 12(7), dmm039347. doi: 10.1242/dmm.039347 PMID: 31383635
  17. Akbari, S.; Arslan, N.; Senturk, S.; Erdal, E. Next-generation liver medicine using organoid models. Front. Cell Dev. Biol., 2019, 7, 345. doi: 10.3389/fcell.2019.00345 PMID: 31921856
  18. Li, Y.; Tang, P.; Cai, S.; Peng, J.; Hua, G. Organoid based personalized medicine: From bench to bedside. Cell Regen., 2020, 9(1), 21. doi: 10.1186/s13619-020-00059-z PMID: 33135109
  19. Yin, X.; Mead, B.E.; Safaee, H.; Langer, R.; Karp, J.M.; Levy, O. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1), 25-38. doi: 10.1016/j.stem.2015.12.005 PMID: 26748754
  20. Saglam-Metiner, P.; Gulce-Iz, S.; Biray-Avci, C. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment. Gene, 2019, 686, 203-212. doi: 10.1016/j.gene.2018.11.058 PMID: 30481551
  21. Ogoke, O.; Maloy, M.; Parashurama, N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol. Rev. Camb. Philos. Soc., 2021, 96(1), 179-204. doi: 10.1111/brv.12650 PMID: 33002311
  22. Wörsdörfer, P; Asahina, I; Sumita, Y; Ergün, S Do not keep it simple: Recent advances in the generation of complex organoids. J Nural Trans., 2020, 127(11), 1569-77. doi: 10.1007/s00702-020-02198-8
  23. Busfield, J. Documenting the financialisation of the pharmaceutical industry. Soc. Sci. Med., 2020, 258, 113096. doi: 10.1016/j.socscimed.2020.113096 PMID: 32563788
  24. Rashid, M.B.M.A. Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol., 2021, 26(1), 3-15. doi: 10.1177/2472630320956931 PMID: 32940124
  25. Gille, C.; Bölling, C.; Hoppe, A.; Bulik, S.; Hoffmann, S.; Hübner, K.; Karlstädt, A.; Ganeshan, R.; König, M.; Rother, K.; Weidlich, M.; Behre, J.; Holzhütter, H.G. HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol., 2010, 6(1), 411. doi: 10.1038/msb.2010.62 PMID: 20823849
  26. Zhou, Q.; Fan, L.; Li, J. Liver regeneration and tissue engineering. In: Artificial Liver; Springer, 2021; pp. 73-94.
  27. Lee, S.Y.; Kim, H.J.; Choi, D. Cell sources, liver support systems and liver tissue engineering: Alternatives to liver transplantation. Int. J. Stem Cells, 2015, 8(1), 36-47. doi: 10.15283/ijsc.2015.8.1.36 PMID: 26019753
  28. Gómez-Lechón, M.J.; Tolosa, L.; Conde, I.; Donato, M.T. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin. Drug Metab. Toxicol., 2014, 10(11), 1553-1568. doi: 10.1517/17425255.2014.967680 PMID: 25297626
  29. Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.W.; Meredith, J.; Stacey, G.N.; Thraves, P.; Vias, M. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer, 2014, 111(6), 1021-1046. doi: 10.1038/bjc.2014.166 PMID: 25117809
  30. Bissell, D.M.; Levine, G.A.; Bissell, M.J. Glucose metabolism by adult hepatocytes in primary culture and by cell lines from rat liver. Am. J. Physiol. Cell Physiol., 1978, 234(3), C122-C130. doi: 10.1152/ajpcell.1978.234.3.C122 PMID: 629333
  31. Young, E.W.K.; Beebe, D.J. Fundamentals of microfluidic cell culture in controlled microenvironments. Chem. Soc. Rev., 2010, 39(3), 1036-1048. doi: 10.1039/b909900j PMID: 20179823
  32. Liting, S.; Emanuel, G. Induced pluripotent stem cells are induced pluripotent stem cell-like cells. J. Biomed. Res., 2015, 29(1), 1-2. doi: 10.7555/JBR.29.20140166 PMID: 25745470
  33. Rashid, S.T.; Corbineau, S.; Hannan, N.; Marciniak, S.J.; Miranda, E.; Alexander, G.; Huang-Doran, I.; Griffin, J.; Ahrlund-Richter, L.; Skepper, J.; Semple, R.; Weber, A.; Lomas, D.A.; Vallier, L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest., 2010, 120(9), 3127-3136. doi: 10.1172/JCI43122 PMID: 20739751
  34. Afify, S.M.; Sanchez Calle, A.; Hassan, G.; Kumon, K.; Nawara, H.M.; Zahra, M.H.; Mansour, H.M.; Khayrani, A.C.; Alam, M.J.; Du, J.; Seno, A.; Iwasaki, Y.; Seno, M. A novel model of liver cancer stem cells developed from induced pluripotent stem cells. Br. J. Cancer, 2020, 122(9), 1378-1390. doi: 10.1038/s41416-020-0792-z PMID: 32203212
  35. Chen, Y.F.; Tseng, C.Y.; Wang, H.W.; Kuo, H.C.; Yang, V.W.; Lee, O.K. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology, 2012, 55(4), 1193-1203. doi: 10.1002/hep.24790 PMID: 22095466
  36. Mallanna, SK; Duncan, SA Differentiation of hepatocytes from pluripotent stem cells. Curr Prot Stem Cell Biol, 2013, 26(1), 4.1-4.13. doi: 10.1002/9780470151808.sc01g04s26
  37. Schwartz, R.E.; Fleming, H.E.; Khetani, S.R.; Bhatia, S.N. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol. Adv., 2014, 32(2), 504-513. doi: 10.1016/j.biotechadv.2014.01.003 PMID: 24440487
  38. Hannoun, Z.; Steichen, C.; Dianat, N.; Weber, A.; Dubart-Kupperschmitt, A. The potential of induced pluripotent stem cell derived hepatocytes. J. Hepatol., 2016, 65(1), 182-199. doi: 10.1016/j.jhep.2016.02.025 PMID: 26916529
  39. Xie, Y.; Yao, J.; Jin, W.; Ren, L.; Li, X. Induction and maturation of hepatocyte-like cells in vitro: Focus on technological advances and challenges. Front. Cell Dev. Biol., 2021, 9, 765980. doi: 10.3389/fcell.2021.765980 PMID: 34901010
  40. Dedifferentiation, transdifferentiation, and reprogramming: Future directions in regenerative medicine. In: Seminars in reproductive medicine; Eguizabal, C.; Montserrat, N.; Veiga, A.; Belmonte, J.C.I., Eds.; Thieme Medical Publishers, 2013.
  41. Yang, L.; Li, S.; Hatch, H.; Ahrens, K.; Cornelius, J.G.; Petersen, B.E.; Peck, A.B. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl. Acad. Sci., 2002, 99(12), 8078-8083. doi: 10.1073/pnas.122210699 PMID: 12048252
  42. Tolosa, L.; Pareja, E.; Gómez-Lechón, M.J. Clinical application of pluripotent stem cells: An alternative cell-based therapy for treating liver diseases? Transplantation, 2016, 100(12), 2548-2557. doi: 10.1097/TP.0000000000001426 PMID: 27495745
  43. Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(8), 2506-2519. doi: 10.1016/j.bbagen.2014.01.010 PMID: 24418517
  44. Nuciforo, S.; Heim, M.H. Organoids to model liver disease. JHEP Reports, 2021, 3(1), 100198. doi: 10.1016/j.jhepr.2020.100198 PMID: 33241206
  45. Bilzer, M.; Roggel, F.; Gerbes, A.L. Role of Kupffer cells in host defense and liver disease. Liver Int., 2006, 26(10), 1175-1186. doi: 10.1111/j.1478-3231.2006.01342.x PMID: 17105582
  46. Gracia-Sancho, J.; Caparrós, E.; Fernández-Iglesias, A.; Francés, R. Role of liver sinusoidal endothelial cells in liver diseases. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(6), 411-431. doi: 10.1038/s41575-020-00411-3 PMID: 33589830
  47. Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of nonalcoholic steatohepatitis: An overview. Hepatol. Commun., 2020, 4(4), 478-492. doi: 10.1002/hep4.1479 PMID: 32258944
  48. Knight, E.; Przyborski, S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat., 2015, 227(6), 746-756. doi: 10.1111/joa.12257 PMID: 25411113
  49. Khademhosseini, A.; Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials, 2007, 28(34), 5087-5092. doi: 10.1016/j.biomaterials.2007.07.021 PMID: 17707502
  50. Badekila, A.K.; Kini, S.; Jaiswal, A.K. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J. Cell. Physiol., 2021, 236(2), 741-762. doi: 10.1002/jcp.29935 PMID: 32657458
  51. Karsdal, M.A.; Manon-Jensen, T.; Genovese, F.; Kristensen, J.H.; Nielsen, M.J.; Sand, J.M.B.; Hansen, N.U.B.; Bay-Jensen, A.C.; Bager, C.L.; Krag, A.; Blanchard, A.; Krarup, H.; Leeming, D.J.; Schuppan, D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2015, 308(10), G807-G830. doi: 10.1152/ajpgi.00447.2014 PMID: 25767261
  52. Ye, S.; Boeter, J.W.B.; Penning, L.C.; Spee, B.; Schneeberger, K. Hydrogels for liver tissue engineering. Bioengineering, 2019, 6(3), 59. doi: 10.3390/bioengineering6030059 PMID: 31284412
  53. Tsou, Y.H.; Khoneisser, J.; Huang, P.C.; Xu, X. Hydrogel as a bioactive material to regulate stem cell fate. Bioact. Mater., 2016, 1(1), 39-55. doi: 10.1016/j.bioactmat.2016.05.001 PMID: 29744394
  54. Xu, M.; Qin, M.; Cheng, Y.; Niu, X.; Kong, J.; Zhang, X.; Huang, D.; Wang, H. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr. Polym., 2021, 266, 118128. doi: 10.1016/j.carbpol.2021.118128 PMID: 34044944
  55. Liu, T.; Wang, Y.; Zhong, W.; Li, B.; Mequanint, K.; Luo, G.; Xing, M. Biomedical applications of layer-by-layer self-assembly for cell encapsulation: Current status and future perspectives. Adv. Healthc. Mater., 2019, 8(1), 1800939. doi: 10.1002/adhm.201800939 PMID: 30511822
  56. Zhang, B.; Li, Y.; Wang, G.; Jia, Z.; Li, H.; Peng, Q.; Gao, Y. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells. J. Mater. Sci. Mater. Med., 2018, 29(5), 49. doi: 10.1007/s10856-018-6058-0 PMID: 29675647
  57. Krull, R.; Lladó-Maldonado, S.; Lorenz, T.; Demming, S.; Büttgenbach, S. Microbioreactors. In: Microsystems for Pharmatechnology; Springer, 2016; pp. 99-152. doi: 10.1007/978-3-319-26920-7_4
  58. Polidoro, M.A.; Ferrari, E.; Marzorati, S.; Lleo, A.; Rasponi, M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int., 2021, 41(8), 1744-1761. doi: 10.1111/liv.14942 PMID: 33966344
  59. Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F.G.; Lim, K.T.; Nagai, M.; Santra, T.S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials, 2022, 280, 121247. doi: 10.1016/j.biomaterials.2021.121247 PMID: 34801251
  60. Rothbauer, M.; Wartmann, D.; Charwat, V.; Ertl, P. Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol. Adv., 2015, 33(6), 948-961. doi: 10.1016/j.biotechadv.2015.06.006 PMID: 26133396
  61. Moraes, C.; Mehta, G.; Lesher-Perez, S.C.; Takayama, S. Organs-on-a-chip: A focus on compartmentalized microdevices. Ann. Biomed. Eng., 2012, 40(6), 1211-1227. doi: 10.1007/s10439-011-0455-6 PMID: 22065201
  62. Fang, X. Microfluidic chip. In: Clinical Molecular Diagnostics; Springer, 2021; pp. 357-375. doi: 10.1007/978-981-16-1037-0_26
  63. Kulkarni, P.; Parkale, R.; Khare, S.; Kumar, P.; Arya, N. Cell immobilization strategies for tissue engineering: Recent trends and future perspectives. In: Immobilization Strategies; Springer, 2021; pp. 85-139.
  64. Hajifathaliha, F.; Mahboubi, A.; Bolourchian, N.; Mohit, E.; Nematollahi, L. Multilayer alginate microcapsules for live cell microencapsulation; is there any preference for selecting cationic polymers? Iran. J. Pharm. Res., 2021, 20(2), 173-182. PMID: 34567154
  65. Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll., 2021, 120, 106882. doi: 10.1016/j.foodhyd.2021.106882
  66. Da Silva, K.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Three-dimensional printing of extracellular matrix (ECM)-mimicking scaffolds: A critical review of the current ECM materials. J. Biomed. Mater. Res. A, 2020, 108(12), 2324-2350. doi: 10.1002/jbm.a.36981 PMID: 32363804
  67. Moradi, E.; Jalili-Firoozinezhad, S.; Solati-Hashjin, M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater., 2020, 116, 67-83. doi: 10.1016/j.actbio.2020.08.041 PMID: 32890749
  68. Ahn, J.; Ko, J.; Lee, S.; Yu, J.; Kim, Y.; Jeon, N.L. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv. Drug Deliv. Rev., 2018, 128, 29-53. doi: 10.1016/j.addr.2018.04.001 PMID: 29626551
  69. Cecen, B.; Bal-Ozturk, A.; Yasayan, G.; Alarcin, E.; Kocak, P.; Tutar, R.; Kozaci, L.D.; Shin, S.R.; Miri, A.K. Selection of natural biomaterials for micro-tissue and organ-on-chip models. J. Biomed. Mater. Res. A, 2022, 110(5), 1147-1165. doi: 10.1002/jbm.a.37353 PMID: 35102687
  70. Agarwal, T.; Subramanian, B.; Maiti, T.K. Liver tissue engineering: Challenges and opportunities. ACS Biomater. Sci. Eng., 2019, 5(9), 4167-4182. doi: 10.1021/acsbiomaterials.9b00745 PMID: 33417776
  71. Li, K.; Zhang, G.; Zhang, C.; Yang, J.; Wu, C.; Huo, X. Assessment of in vitro 3D large-scale hepatocyte proliferation culture system and automated and intelligent bioreactor systems. Chinese J Tissue Eng Res., 2022, 26(19), 3100.
  72. Chen, S.; Wang, J.; Ren, H.; Liu, Y.; Xiang, C.; Li, C.; Lu, S.; Shi, Y.; Deng, H.; Shi, X. Hepatic spheroids derived from human induced pluripotent stem cells in bio-artificial liver rescue porcine acute liver failure. Cell Res., 2020, 30(1), 95-97. doi: 10.1038/s41422-019-0261-5 PMID: 31827240
  73. Tuerxun, K.; He, J.; Ibrahim, I.; Yusupu, Z.; Yasheng, A.; Xu, Q.; Tang, R.; Aikebaier, A.; Wu, Y.; Tuerdi, M.; Nijiati, M.; Zou, X.; Xu, T. Bioartificial livers: A review of their design and manufacture. Biofabrication, 2022, 14(3), 032003. doi: 10.1088/1758-5090/ac6e86 PMID: 35545058
  74. Zhang, Y.; Lu, J.; Ji, F.; Wang, J.; Pan, X.; Li, L. Bio-artificial liver. In: Artificial Liver; Springer, 2021; pp. 479-504.
  75. Kryou, C.; Leva, V.; Chatzipetrou, M.; Zergioti, I. Bioprinting for liver transplantation. Bioengineering, 2019, 6(4), 95. doi: 10.3390/bioengineering6040095 PMID: 31658719
  76. Ma, L.; Wu, Y.; Li, Y.; Aazmi, A.; Zhou, H.; Zhang, B.; Yang, H. Current advances on 3D-bioprinted liver tissue models. Adv. Healthc. Mater., 2020, 9(24), 2001517. doi: 10.1002/adhm.202001517 PMID: 33073522
  77. Nie, J.; Gao, Q.; Fu, J.; He, Y. Grafting of 3D bioprinting to in vitro drug screening: A review. Adv. Healthc. Mater., 2020, 9(7), 1901773. doi: 10.1002/adhm.201901773 PMID: 32125787
  78. Han, W.; Wu, Q.; Zhang, X.; Duan, Z. Innovation for hepatotoxicity in vitro research models: A review. J. Appl. Toxicol., 2019, 39(1), 146-162. doi: 10.1002/jat.3711 PMID: 30182494
  79. Calitz, C. Establishing three-dimensional cell culture models to measure biotransformation and toxicity: North-West University; Campus: Potchefstroom, 2018.
  80. Ou, X.; Chen, P.; Huang, X.; Li, S.; Liu, B.F. Microfluidic chip electrophoresis for biochemical analysis. J. Sep. Sci., 2020, 43(1), 258-270. doi: 10.1002/jssc.201900758 PMID: 31654552
  81. Wang, Y.; Wang, H.; Deng, P.; Tao, T.; Liu, H.; Wu, S.; Chen, W.; Qin, J. Modeling human nonalcoholic fatty liver disease (NAFLD) with an organoids-on-a-chip system. ACS Biomater. Sci. Eng., 2020, 6(10), 5734-5743. doi: 10.1021/acsbiomaterials.0c00682 PMID: 33320545
  82. Kanabekova, P.; Kadyrova, A.; Kulsharova, G. Microfluidic organ-on-a-chip devices for liver disease modeling in vitro. Micromachines, 2022, 13(3), 428. doi: 10.3390/mi13030428 PMID: 35334720
  83. Rauth, S.; Karmakar, S.; Batra, S.K.; Ponnusamy, M.P. Recent advances in organoid development and applications in disease modeling. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188527. doi: 10.1016/j.bbcan.2021.188527 PMID: 33640383
  84. Zhu, M.; Huang, Y.; Bian, S.; Song, Q.; Zhang, J.; Zheng, W.; Cheng, C. Organoids: Current implications and pharmaceutical applications in liver diseases. Curr. Mol. Pharmacol., 2021, 14(4), 498-508. doi: 10.2174/1874467213666201217115854 PMID: 33334301
  85. Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A.M.; Liu, X.; Xie, X.; Livermore, C.; Zhang, Y.S.; Zarrinpar, A. Liver-on-a-chip models of fatty liver disease. Hepatology, 2020, 71(2), 733-740. doi: 10.1002/hep.31106 PMID: 31909504

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024