Identifying Dental Pulp Stem Cell as a Novel Therapeutic trategy for Digestive Diseases
- Authors: Bian S.1, Zheng W.2, Sun X.3, Lin Z.4, Xu N.2, Chen Y.1
-
Affiliations:
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University
- Research Center of Clinical Medicine,, Affiliated Hospital of Nantong University, Medical School of Nantong University
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University,
- Issue: Vol 19, No 10 (2024)
- Pages: 1293-1302
- Section: Medicine
- URL: https://rjpbr.com/1574-888X/article/view/645441
- DOI: https://doi.org/10.2174/011574888X275737231120045815
- ID: 645441
Cite item
Full Text
Abstract
:Mesenchymal stem cells (MSCs) have been identified as potential therapeutics for various diseases. In contrast to other sources of MSCs, dental stem cells (DSCs) have received increased attention due to their high activity and easy accessibility. Among them, dental pulp stem cells (DPSCs) exhibit superior self-renewal, multipotency, immunomodulatory, and regenerative capacities. Following their inspiring performance in animal models and clinical trials, DPSCs show pharmacological potential in regenerative medicine. In this review, we have generalized the sources, heterogeneity, and biological characteristics of DPSCs, as well as compared them with other types of dental stem cells. In addition, we summarized the application of DPSCs in digestive diseases (such as liver, esophageal, and intestinal diseases), highlighting their regenerative and pharmacological potential based on the existing preclinical and clinical evidence. Specifically, DPSCs can be home to injured or inflamed tissues and exert repair and regeneration functions by facilitating immune regulation, anti-inflammation, and directional differentiation. Although DPSCs have a rosy prospect, future studies should handle the underlying drawbacks and pave the way for the identification of DPSCs as novel regenerative medicine.
About the authors
Saiyan Bian
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University
Email: info@benthamscience.net
Wenjie Zheng
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University
Author for correspondence.
Email: info@benthamscience.net
Xieyin Sun
Research Center of Clinical Medicine,, Affiliated Hospital of Nantong University, Medical School of Nantong University
Email: info@benthamscience.net
Zhaoyi Lin
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University,
Email: info@benthamscience.net
Nuo Xu
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University
Email: info@benthamscience.net
Yinqi Chen
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University
Email: info@benthamscience.net
References
- in t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.J.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003, 102(4), 1548-1549. doi: 10.1182/blood-2003-04-1291 PMID: 12900350
- Secco, M.; Zucconi, E.; Vieira, N.M.; Fogaça, L.L.Q.; Cerqueira, A.; Carvalho, M.D.F.; Jazedje, T.; Okamoto, O.K.; Muotri, A.R.; Zatz, M. Multipotent stem cells from umbilical cord: Cord is richer than blood!. Stem Cells, 2008, 26(1), 146-150. doi: 10.1634/stemcells.2007-0381 PMID: 17932423
- Gruber, H.E.; Deepe, R.; Hoelscher, G.L.; Ingram, J.A.; Norton, H.J.; Scannell, B.; Loeffler, B.J.; Zinchenko, N.; Hanley, E.N., Jr; Tapp, H. Human adipose-derived mesenchymal stem cells: Direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng. Part A, 2010, 16(9), 2843-2860. doi: 10.1089/ten.tea.2009.0709 PMID: 20408770
- Friedenstein, A.J.; Piatetzky-Shapiro, I.I.; Petrakova, K.V. Osteogenesis in transplants of bone marrow cells. Development, 1966, 16(3), 381-390. doi: 10.1242/dev.16.3.381 PMID: 5336210
- Staniowski, T.; Zawadzka-Knefel, A.; Skośkiewicz-Malinowska, K. Therapeutic potential of dental pulp stem cells according to different transplant types. Molecules, 2021, 26(24), 7423. doi: 10.3390/molecules26247423 PMID: 34946506
- Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dentalpulp stem cells. J Dent Res 2002; 81(8): 531-5. doi: 10.1177/154405910208100806. PMID: 12147742
- Mai, Z.; Chen, H.; Ye, Y.; Hu, Z.; Sun, W.; Cui, L.; Zhao, X. Translational and clinical applications of dental stem cell-derived exosomes. Front. Genet., 2021, 12, 750990. doi: 10.3389/fgene.2021.750990 PMID: 34764982
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci, 2000, 97(25), 13625-13630. doi: 10.1073/pnas.240309797 PMID: 11087820
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem cell properties of human dental pulp stem cells. J. Dent. Res., 2002, 81(8), 531-535. doi: 10.1177/154405910208100806 PMID: 12147742
- Botelho, J.; Cavacas, M.A.; Machado, V.; Mendes, J.J. Dental stem cells: Recent progresses in tissue engineering and regenerative medicine. Ann. Med., 2017, 49(8), 644-651. doi: 10.1080/07853890.2017.1347705 PMID: 28649865
- Liu, Y.; Wang, L.; Liu, S.; Liu, D.; Chen, C.; Xu, X.; Chen, X.; Shi, S. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J. Dent. Res., 2014, 93(11), 1124-1132. doi: 10.1177/0022034514552675 PMID: 25252877
- Huang, G.T.J.; Yamaza, T.; Shea, L.D.; Djouad, F.; Kuhn, N.Z.; Tuan, R.S.; Shi, S. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng. Part A, 2010, 16(2), 605-615. doi: 10.1089/ten.tea.2009.0518 PMID: 19737072
- Yamaza, T.; Kentaro, A.; Chen, C.; Liu, Y.; Shi, Y.; Gronthos, S.; Wang, S.; Shi, S. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res. Ther., 2010, 1(1), 5. doi: 10.1186/scrt5 PMID: 20504286
- Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Xu, X.; Chen, X.; Shi, S. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J. Dent. Res., 2015, 94(1), 209-218. doi: 10.1177/0022034514557672 PMID: 25394850
- Kaukua, N.; Shahidi, M.K.; Konstantinidou, C.; Dyachuk, V.; Kaucka, M.; Furlan, A.; An, Z.; Wang, L.; Hultman, I.; Ährlund-Richter, L.; Blom, H.; Brismar, H.; Lopes, N.A.; Pachnis, V.; Suter, U.; Clevers, H.; Thesleff, I.; Sharpe, P.; Ernfors, P.; Fried, K.; Adameyko, I. Glial origin of mesenchymal stem cells in a tooth model system. Nature, 2014, 513(7519), 551-554. doi: 10.1038/nature13536 PMID: 25079316
- Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S.A.; Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 2008, 26(7), 1787-1795. doi: 10.1634/stemcells.2007-0979 PMID: 18499892
- Ishizaka, R.; Hayashi, Y.; Iohara, K.; Sugiyama, M.; Murakami, M.; Yamamoto, T.; Fukuta, O.; Nakashima, M. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials, 2013, 34(8), 1888-1897. doi: 10.1016/j.biomaterials.2012.10.045 PMID: 23245334
- Iohara, K.; Zheng, L.; Ito, M.; Ishizaka, R.; Nakamura, H.; Into, T.; Matsushita, K.; Nakashima, M. Regeneration of dental pulp after pulpotomy by transplantation of CD31 -/CD146 - side population cells from a canine tooth. Regen. Med., 2009, 4(3), 377-385. doi: 10.2217/rme.09.5 PMID: 19438313
- Iohara, K.; Murakami, M.; Takeuchi, N.; Osako, Y.; Ito, M.; Ishizaka, R.; Utunomiya, S.; Nakamura, H.; Matsushita, K.; Nakashima, M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl. Med., 2013, 2(7), 521-533. doi: 10.5966/sctm.2012-0132 PMID: 23761108
- Zhao, H.; Feng, J.; Seidel, K.; Shi, S.; Klein, O.; Sharpe, P.; Chai, Y. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell, 2014, 14(2), 160-173. doi: 10.1016/j.stem.2013.12.013 PMID: 24506883
- Sui, B.; Chen, C.; Kou, X.; Li, B.; Xuan, K.; Shi, S.; Jin, Y. Pulp stem cellmediated functional pulp regeneration. J. Dent. Res., 2019, 98(1), 27-35. doi: 10.1177/0022034518808754 PMID: 30372659
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci., 2003, 100(10), 5807-5812. doi: 10.1073/pnas.0937635100 PMID: 12716973
- An, Z.; Sabalic, M.; Bloomquist, R.F.; Fowler, T.E.; Streelman, T.; Sharpe, P.T. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun., 2018, 9(1), 378. doi: 10.1038/s41467-017-02785-6 PMID: 29371677
- Liu, Y.; Jing, H.; Kou, X.; Chen, C.; Liu, D.; Jin, Y.; Lu, L.; Shi, S. PD-1 is required to maintain stem cell properties in human dental pulp stem cells. Cell Death Differ., 2018, 25(7), 1350-1360. doi: 10.1038/s41418-018-0077-8 PMID: 29472716
- Iohara, K.; Imabayashi, K.; Ishizaka, R.; Watanabe, A.; Nabekura, J.; Ito, M.; Matsushita, K.; Nakamura, H.; Nakashima, M. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng. Part A, 2011, 17(15-16), 1911-1920. doi: 10.1089/ten.tea.2010.0615 PMID: 21417716
- Sui, B.; Wu, D.; Xiang, L.; Fu, Y.; Kou, X.; Shi, S. Dental pulp stem cells: From discovery to clinical application. J. Endod., 2020, 46(9), S46-S55. doi: 10.1016/j.joen.2020.06.027 PMID: 32950195
- Galipeau, J.; Sensébé, L. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell, 2018, 22(6), 824-833. doi: 10.1016/j.stem.2018.05.004 PMID: 29859173
- Nosrat, I.V.; Smith, C.A.; Mullally, P.; Olson, L.; Nosrat, C.A. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur. J. Neurosci., 2004, 19(9), 2388-2398. doi: 10.1111/j.0953-816X.2004.03314.x PMID: 15128393
- Kou, X.; Xu, X.; Chen, C.; Sanmillan, M.L.; Cai, T.; Zhou, Y.; Giraudo, C.; Le, A.; Shi, S. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci. Transl. Med., 2018, 10(432), eaai8524. doi: 10.1126/scitranslmed.aai8524 PMID: 29540618
- Jarmalavičiūtė, A.; Tunaitis, V.; Pivoraitė, U.; Venalis, A.; Pivoriūnas, A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamineinduced apoptosis. Cytotherapy, 2015, 17(7), 932-939. doi: 10.1016/j.jcyt.2014.07.013 PMID: 25981557
- Lee, A.E.; Choi, J.G.; Shi, S.H.; He, P.; Zhang, Q.Z.; Le, A.D. DPSC-derived extracellular vesicles promote rat jawbone regeneration. J. Dent. Res., 2023, 102(3), 313-321. doi: 10.1177/00220345221133716 PMID: 36348514
- Imanishi, Y.; Hata, M.; Matsukawa, R.; Aoyagi, A.; Omi, M.; Mizutani, M.; Naruse, K.; Ozawa, S.; Honda, M.; Matsubara, T.; Takebe, J. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm. Regen., 2021, 41(1), 12. doi: 10.1186/s41232-021-00163-w PMID: 33853679
- Takaoka, S.; Uchida, F.; Ishikawa, H.; Toyomura, J.; Ohyama, A.; Watanabe, M.; Matsumura, H.; Marushima, A.; Iizumi, S.; Fukuzawa, S.; Ishibashi-Kanno, N.; Yamagata, K.; Yanagawa, T.; Matsumaru, Y.; Bukawa, H. Transplanted neural lineage cells derived from dental pulp stem cells promote peripheral nerve regeneration. Hum. Cell, 2022, 35(2), 462-471. doi: 10.1007/s13577-021-00634-9 PMID: 34993901
- Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int. J. Oral Sci., 2019, 11(3), 23. doi: 10.1038/s41368-019-0060-3 PMID: 31423011
- El Moshy, S.; Radwan, I.A.; Rady, D.; Abbass, M.M.S.; El-Rashidy, A.A.; Sadek, K.M.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Dental stem cell-derived secretome/conditioned medium: The future for regenerative therapeutic applications. Stem Cells Int., 2020, 2020, 1-29. doi: 10.1155/2020/7593402 PMID: 32089709
- Tanikawa, D.Y.S.; Pinheiro, C.C.G.; Almeida, M.C.A.; Oliveira, C.R.G.C.M.; Coudry, R.A.; Rocha, D.L.; Bueno, D.F. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int., 2020, 2020, 1-9. doi: 10.1155/2020/6234167 PMID: 32256610
- Ye, Q.; Wang, H.; Xia, X.; Zhou, C.; Liu, Z.; Xia, Z.; Zhang, Z.; Zhao, Y.; Yehenala, J.; Wang, S.; Zhou, G.; Hu, K.; Wu, B.; Wu, C.T.; Wang, S.; He, Y. Safety and efficacy assessment of allogeneic human dental pulp stem cells to treat patients with severe COVID-19: Structured summary of a study protocol for a randomized controlled trial (Phase I/II). Trials, 2020, 21(1), 520. doi: 10.1186/s13063-020-04380-5 PMID: 32532356
- Song, W.P.; Jin, L.Y.; Zhu, M.D.; Wang, H.; Xia, D.S. Clinical trials using dental stem cells: 2022 update. World J. Stem Cells, 2023, 15(3), 31-51. doi: 10.4252/wjsc.v15.i3.31 PMID: 37007456
- Pinheiro, C.C.G.; Leyendecker Junior, A.; Tanikawa, D.Y.S.; Ferreira, J.R.M.; Jarrahy, R.; Bueno, D.F. Is there a noninvasive source of MSCs isolated with GMP methods with better osteogenic potential? Stem Cells Int., 2019, 2019, 1-14. doi: 10.1155/2019/7951696 PMID: 31781247
- Wenceslau, C.V.; de Souza, D.M.; Mambelli-Lisboa, N.C.; Ynoue, L.H.; Araldi, R.P.; da Silva, J.M.; Pagani, E.; Haddad, M.S.; Kerkis, I. Restoration of BDNF, DARPP32, and D2R expression following intravenous infusion of human immature dental pulp stem cells in huntingtons disease 3-NP rat model. Cells, 2022, 11(10), 1664. doi: 10.3390/cells11101664 PMID: 35626701
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol., 2020, 18(12), 2650-2666. doi: 10.1016/j.cgh.2019.07.060 PMID: 31401364
- Du, X.S.; Li, H.D.; Yang, X.J.; Li, J.J.; Xu, J.J.; Chen, Y.; Xu, Q.Q.; Yang, L.; He, C.S.; Huang, C.; Meng, X.M.; Li, J. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol., 2019, 75, 105671. doi: 10.1016/j.intimp.2019.05.056 PMID: 31377590
- Devaraj, E.; Perumal, E.; Subramaniyan, R.; Mustapha, N. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space. Hepatology, 2022, 76(1), 275-285. doi: 10.1002/hep.32239 PMID: 34773651
- Schildberg, F.A.; Sharpe, A.H.; Turley, S.J. Hepatic immune regulation by stromal cells. Curr. Opin. Immunol., 2015, 32, 1-6. doi: 10.1016/j.coi.2014.10.002 PMID: 25463592
- Luo, N.; Li, J.; Wei, Y.; Lu, J.; Dong, R. Hepatic stellate cell: A double-edged sword in the liver. Physiol. Res., 2021, 70(6), 821-829. doi: 10.33549/physiolres.934755 PMID: 34717063
- Kim, H.J.; Cho, Y.A.; Lee, Y.M.; Lee, S.Y.; Bae, W.J.; Kim, E.C. PIN1 suppresses the hepatic differentiation of pulp stem cells via Wnt3a. J. Dent. Res., 2016, 95(12), 1415-1424. doi: 10.1177/0022034516659642 PMID: 27439725
- Psaraki, A.; Ntari, L.; Karakostas, C.; Korrou-Karava, D.; Roubelakis, M.G. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology, 2022, 75(6), 1590-1603. doi: 10.1002/hep.32129 PMID: 34449901
- Li, P.; Ou, Q.; Shi, S.; Shao, C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell. Mol. Immunol., 2023, 20(6), 558-569. doi: 10.1038/s41423-023-00998-y PMID: 36973490
- Yao, J.; Chen, N.; Wang, X.; Zhang, L.; Huo, J.; Chi, Y.; Li, Z.; Han, Z. Human supernumerary teeth-derived apical papillary stem cells possess preferable characteristics and efficacy on hepatic fibrosis in mice. Stem Cells Int., 2020, 2020, 1-12. doi: 10.1155/2020/6489396 PMID: 32399047
- Nagano, T.; Mori-Kudo, I.; Kawamura, T.; Taiji, M.; Noguchi, H. Pre- or post-treatment with hepatocyte growth factor prevents glycerol-induced acute renal failure. Ren. Fail., 2004, 26(1), 5-11. doi: 10.1081/JDI-120028537 PMID: 15083915
- Li, J.T.; Liao, Z.X.; Ping, J.; Xu, D.; Wang, H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J. Gastroenterol., 2008, 43(6), 419-428. doi: 10.1007/s00535-008-2180-y PMID: 18600385
- Mormone, E.; George, J.; Nieto, N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem. Biol. Interact., 2011, 193(3), 225-231. doi: 10.1016/j.cbi.2011.07.001 PMID: 21803030
- Iwanaka, T.; Yamaza, T.; Sonoda, S.; Yoshimaru, K.; Matsuura, T.; Yamaza, H.; Ohga, S.; Oda, Y.; Taguchi, T. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res. Ther., 2020, 11(1), 134. doi: 10.1186/s13287-020-01630-w PMID: 32213198
- Morishita, R.; Aoki, M.; Yo, Y.; Ogihara, T. Hepatocyte growth factor as cardiovascular hormone: Role of HGF in the pathogenesis of cardiovascular disease. Endocr. J., 2002, 49(3), 273-284. doi: 10.1507/endocrj.49.273 PMID: 12201209
- Ding, B.S.; Nolan, D.J.; Butler, J.M.; James, D.; Babazadeh, A.O.; Rosenwaks, Z.; Mittal, V.; Kobayashi, H.; Shido, K.; Lyden, D.; Sato, T.N.; Rabbany, S.Y.; Rafii, S. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature, 2010, 468(7321), 310-315. doi: 10.1038/nature09493 PMID: 21068842
- Kawaida, K.; Matsumoto, K.; Shimazu, H.; Nakamura, T. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc. Natl. Acad. Sci., 1994, 91(10), 4357-4361. doi: 10.1073/pnas.91.10.4357 PMID: 8183913
- Cao, X.; Jin, S.; Sun, L.; Zhan, Y.; Lin, F.; Li, Y.; Zhou, Y.; Wang, X.; Gao, L.; Zhang, B. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model. Sci. Rep., 2017, 7(1), 15812. doi: 10.1038/s41598-017-14995-5 PMID: 29150644
- Verma, V.; Simone, C., II; Werner-Wasik, M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers, 2017, 9(12), 120. doi: 10.3390/cancers9090120 PMID: 28885561
- Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist, 2010, 15(4), 360-371. doi: 10.1634/theoncologist.2009-S104 PMID: 20413641
- Palma, D.A.; Senan, S.; Oberije, C.; Belderbos, J.; Dios, N.R.; Bradley, J.D.; Barriger, R.B.; Moreno-Jiménez, M.; Kim, T.H.; Ramella, S.; Everitt, S.; Rengan, R.; Marks, L.B.; De Ruyck, K.; Warner, A.; Rodrigues, G. Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: An individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys., 2013, 87(4), 690-696. doi: 10.1016/j.ijrobp.2013.07.029 PMID: 24035329
- Kim, D.B.; Bowers, S.; Thomas, M. Black and white esophagus: Rare presentations of severe esophageal ischemia. Semin. Thorac. Cardiovasc. Surg., 2017, 29(2), 256-259. doi: 10.1053/j.semtcvs.2017.01.006 PMID: 28823340
- Zhang, C.; Zhang, Y.; Feng, Z.; Zhang, F.; Liu, Z.; Sun, X.; Ruan, M.; Liu, M.; Jin, S. Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivity-induced esophageal injury. Cell Death Dis., 2018, 9(7), 738. doi: 10.1038/s41419-018-0753-0 PMID: 29970894
- Herrera-Imbroda, B.; Aragón, I.M.; Hierro, M.I.; Álvarez, M.; Alaminos, M.; Campos, A.; Izeta, A.; Machuca, J.; Lara, M.F. An immunohistochemical study of cytokeratins distribution of the human adult male and female urethra. Histol. Histopathol., 2017, 32(3), 283-291. PMID: 27337975
- Giampietri, C.; Petrungaro, S.; Coluccia, P.; Antonangeli, F.; Giannakakis, K.; Faraggiana, T.; Filippini, A.; Cossu, G.; Ziparo, E. c-Flip overexpression affects satellite cell proliferation and promotes skeletal muscle aging. Cell Death Dis., 2010, 1(4), e38. doi: 10.1038/cddis.2010.17 PMID: 21364645
- Croagh, D.; Phillips, W.A.; Redvers, R.; Thomas, R.J.S.; Kaur, P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells, 2007, 25(2), 313-318. doi: 10.1634/stemcells.2006-0421 PMID: 17038667
- Croagh, D.; Thomas, R.J.S.; Phillips, W.A.; Kaur, P. Esophageal stem cells-a review of their identification and characterization. Stem Cell Rev., 2008, 4(4), 261-268. doi: 10.1007/s12015-008-9031-3 PMID: 18679835
- Loftus, E.V., Jr Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 2004, 126(6), 1504-1517. doi: 10.1053/j.gastro.2004.01.063 PMID: 15168363
- Kumar, M.; Garand, M.; Al Khodor, S. Integrating omics for a better understanding of Inflammatory Bowel Disease: A step towards personalized medicine. J. Transl. Med., 2019, 17(1), 419. doi: 10.1186/s12967-019-02174-1 PMID: 31836022
- Conrad, K.; Roggenbuck, D.; Laass, M.W. Diagnosis and classification of ulcerative colitis. Autoimmun. Rev., 2014, 13(4-5), 463-466. doi: 10.1016/j.autrev.2014.01.028 PMID: 24424198
- West, N.R.; Hegazy, A.N.; Owens, B.M.J.; Bullers, S.J.; Linggi, B.; Buonocore, S.; Coccia, M.; Görtz, D.; This, S.; Stockenhuber, K.; Pott, J.; Friedrich, M.; Ryzhakov, G.; Baribaud, F.; Brodmerkel, C.; Cieluch, C.; Rahman, N.; Müller-Newen, G.; Owens, R.J.; Kühl, A.A.; Maloy, K.J.; Plevy, S.E.; Keshav, S.; Travis, S.P.L.; Powrie, F. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factorneutralizing therapy in patients with inflammatory bowel disease. Nat. Med., 2017, 23(5), 579-589. doi: 10.1038/nm.4307 PMID: 28368383
- Lightner, A.L. Duodenal Crohns Disease. Inflamm. Bowel Dis., 2018, 24(3), 546-551. doi: 10.1093/ibd/izx083 PMID: 29462397
- Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Hu, T.; He, X.; Wu, X.; Lan, P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight, 2019, 4(24), e131273. doi: 10.1172/jci.insight.131273 PMID: 31689240
- Li, N.; Zhang, Y.; Nepal, N.; Li, G.; Yang, N.; Chen, H.; Lin, Q.; Ji, X.; Zhang, S.; Jin, S. Dental pulp stem cells overexpressing hepatocyte growth factor facilitate the repair of DSS-induced ulcerative colitis. Stem Cell Res. Ther., 2021, 12(1), 30. doi: 10.1186/s13287-020-02098-4 PMID: 33413675
- Zhao, Y.; Wang, L.; Jin, Y.; Shi, S. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells. J. Dent. Res., 2012, 91(10), 948-954. doi: 10.1177/0022034512458690 PMID: 22904205
- Duijvestein, M.; Vos, A.C.W.; Roelofs, H.; Wildenberg, M.E.; Wendrich, B.B.; Verspaget, H.W.; Kooy-Winkelaar, E.M.C.; Koning, F.; Zwaginga, J.J.; Fidder, H.H.; Verhaar, A.P.; Fibbe, W.E.; van den Brink, G.R.; Hommes, D.W. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohns disease: Results of a phase I study. Gut, 2010, 59(12), 1662-1669. doi: 10.1136/gut.2010.215152 PMID: 20921206
- Barnhoorn, M.C.; Wasser, M.N.J.M.; Roelofs, H.; Maljaars, P.W.J.; Molendijk, I.; Bonsing, B.A.; Oosten, L.E.M.; Dijkstra, G.; van der Woude, C.J.; Roelen, D.L.; Zwaginga, J.J.; Verspaget, H.W.; Fibbe, W.E.; Hommes, D.W.; Peeters, K.C.M.J.; van der Meulen-de Jong, A.E. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for crohns disease perianal fistulas. J. Crohns Colitis, 2020, 14(1), 64-70. doi: 10.1093/ecco-jcc/jjz116 PMID: 31197361
- Vieujean, S.; Loly, J.P.; Boutaffala, L.; Meunier, P.; Reenaers, C.; Briquet, A.; Lechanteur, C.; Baudoux, E.; Beguin, Y.; Louis, E. Mesenchymal stem cell injection in crohns disease strictures: A phase III clinical study. J. Crohns Colitis, 2022, 16(3), 506-510. doi: 10.1093/ecco-jcc/jjab154 PMID: 34473270
- Wang, H. MicroRNAs and apoptosis in colorectal cancer. Int. J. Mol. Sci., 2020, 21(15), 5353. doi: 10.3390/ijms21155353 PMID: 32731413
- Lei, G.; Xu, M.; Xu, Z.; Lu, C.; Tan, S. Combination of novel DR5 targeting agonistic scFv antibody TR2-3 with cisplatin shows enhanced synergistic antitumor activity in vitro and in vivo. Biomed. Pharmacother., 2018, 98, 271-279. doi: 10.1016/j.biopha.2017.12.033 PMID: 29272788
- Liu, F.R.; Bai, S.; Feng, Q.; Pan, X.Y.; Song, S.L.; Fang, H.; Cui, J.; Yang, J.L. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer, 2018, 18(1), 1087. doi: 10.1186/s12885-018-4989-y PMID: 30419845
- Rajabinejad, M.; Ranjbar, S.; Afshar Hezarkhani, L.; Salari, F.; Gorgin Karaji, A.; Rezaiemanesh, A. Regulatory T cells for amyotrophic lateral sclerosis/motor neuron disease: A clinical and preclinical systematic review. J. Cell. Physiol., 2020, 235(6), 5030-5040. doi: 10.1002/jcp.29401 PMID: 31788795
- Rajabinejad, M.; Salari, F.; Gorgin Karaji, A.; Rezaiemanesh, A. The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells? Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4149-4158. doi: 10.1080/21691401.2019.1687504 PMID: 31698956
- Lee, H.Y.; Hong, I.S. Double-edged sword of mesenchymal stem cells: Cancer-promoting versus therapeutic potential. Cancer Sci., 2017, 108(10), 1939-1946. doi: 10.1111/cas.13334 PMID: 28756624
- Nikkhah, E.; Kalalinia, F.; Asgharian Rezaee, M.; Tayarani-Najaran, Z. Suppressive effects of dental pulp stem cells and its conditioned medium on development and migration of colorectal cancer cells through MAPKinase pathways. Iran. J. Basic Med. Sci., 2021, 24(9), 1292-1300. PMID: 35083017
- Chen, K.; Liu, Q.; Tsang, L.L.; Ye, Q.; Chan, H.C.; Sun, Y.; Jiang, X. Human MSCs promotes colorectal cancer epithelialmesenchymal transition and progression via CCL5/β-catenin/Slug pathway. Cell Death Dis., 2017, 8(5), e2819. doi: 10.1038/cddis.2017.138 PMID: 28542126
- Sani, I.K.; Marashi, S.H.; Kalalinia, F. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity. Toxicol. In vitro 2015, 29(5), 893-900. doi: 10.1016/j.tiv.2015.03.012 PMID: 25819016
- Ramazani, E.; Tayarani-Najaran, Z.; Fereidoni, M. Celecoxib, indomethacin, and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways. Iran. J. Basic Med. Sci., 2019, 22(5), 477-484. PMID: 31217926
- Rahiman, N.; Akaberi, M.; Sahebkar, A.; Emami, S.A.; Tayarani-Najaran, Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc. Res., 2018, 118, 82-89. doi: 10.1016/j.mvr.2018.03.003 PMID: 29524452
- Yamada, Y.; Nakamura-Yamada, S.; Kusano, K.; Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci., 2019, 20(5), 1132. doi: 10.3390/ijms20051132 PMID: 30845639
- Wilson, R.; Urraca, N.; Skobowiat, C.; Hope, K.A.; Miravalle, L.; Chamberlin, R.; Donaldson, M.; Seagroves, T.N.; Reiter, L.T. Assessment of the tumorigenic potential of spontaneously immortalized and hTERT -immortalized cultured dental pulp stem cells. Stem Cells Transl. Med., 2015, 4(8), 905-912. doi: 10.5966/sctm.2014-0196 PMID: 26032749
- Masuda, K.; Han, X.; Kato, H.; Sato, H.; Zhang, Y.; Sun, X.; Hirofuji, Y.; Yamaza, H.; Yamada, A.; Fukumoto, S. Dental pulp-derived mesenchymal stem cells for modeling genetic disorders. Int. J. Mol. Sci., 2021, 22(5), 2269. doi: 10.3390/ijms22052269 PMID: 33668763
- Rubio, D.; Garcia, S.; Paz, M.F.; De la Cueva, T.; Lopez-Fernandez, L.A.; Lloyd, A.C.; Garcia-Castro, J.; Bernad, A. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One, 2008, 3(1), e1398. doi: 10.1371/journal.pone.0001398 PMID: 18167557
- Spagnuolo G. Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent J 2018; 6(4). doi: 10.3390/dj6040072
- Li, Y.; Lü, X.; Sun, X.; Bai, S.; Li, S.; Shi, J. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1. Arch. Oral Biol., 2011, 56(11), 1221-1229. doi: 10.1016/j.archoralbio.2011.05.002 PMID: 21641578
- Dissanayaka, W.L.; Zhu, L.; Hargreaves, K.M.; Jin, L.; Zhang, C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J. Dent. Res., 2014, 93(12), 1296-1303. doi: 10.1177/0022034514550040 PMID: 25201919
- Prescott, R.S.; Alsanea, R.; Fayad, M.I.; Johnson, B.R.; Wenckus, C.S.; Hao, J.; John, A.S.; George, A. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J. Endod., 2008, 34(4), 421-426. doi: 10.1016/j.joen.2008.02.005 PMID: 18358888
- Shen, Z.; Kuang, S.; Zhang, Y.; Yang, M.; Qin, W.; Shi, X.; Lin, Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact. Mater., 2020, 5(4), 1113-1126. doi: 10.1016/j.bioactmat.2020.07.002 PMID: 32743122
Supplementary files
