Meta-analysis of the Impact of Bariatric Surgery on Circulating TMAO Levels as a Predictor of Cardiovascular Disease Risk
- Authors: Jamialahmadi T.1, Simental-Mendia L.2, Zengin G.3, Almahmeed W.4, Kesharwani P.5, Sahebkar A.6
-
Affiliations:
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Biomedical Research Unit, Mexican Social Security Institute
- Department of Biology, Science Faculty, Selcuk University
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
- Issue: Vol 31, No 24 (2024)
- Pages: 3791-3797
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644850
- DOI: https://doi.org/10.2174/0929867330666230523155750
- ID: 644850
Cite item
Full Text
Abstract
Introduction:Trimethylamine N-oxide (TMAO) is a metabolite of the gut microbiota that is considered a cardiovascular risk factor. Because bariatric surgery (BS) produces changes in the composition of the gut microbiota, the production of TMAO can be compromised. Thus, the purpose of this meta-analysis was to determine the effect of BS on circulating TMAO levels.
Methods:A systematic search was carried on in Embase, PubMed, Web of Science, and Scopus databases. The meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) V2 software. The overall effect size was determined by a random-effects metaanalysis and the leave-one-out approach.
Results:Random-effects meta-analysis of 5 studies consisting of 142 subjects demonstrated a significant increase in circulating TMAO levels after BS (SMD: 1.190, 95% CI: 0.521, 1.858, p(<0.001; I2:89.30%).
Conclusion:Considering that levels of TMAO are affected after BS due to gut microbial metabolism alteration, there has been a significant elevation in TMAO concentrations observed to occur after BS in obese subjects.
About the authors
Tannaz Jamialahmadi
Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Luis Simental-Mendia
Biomedical Research Unit, Mexican Social Security Institute
Email: info@benthamscience.net
Gokhan Zengin
Department of Biology, Science Faculty, Selcuk University
Email: info@benthamscience.net
Wael Almahmeed
Heart and Vascular Institute, Cleveland Clinic Abu Dhabi
Email: info@benthamscience.net
Prashant Kesharwani
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard
Email: info@benthamscience.net
Amirhossein Sahebkar
Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Author for correspondence.
Email: info@benthamscience.net
References
- Ataey, A.; Jafarvand, E.; Adham, D.; Moradi-Asl, E. The relationship between obesity, overweight, and the human development index in world health organization Eastern Mediterranean region countries. J. Prev. Med. Public Health, 2020, 53(2), 98-105. doi: 10.3961/jpmph.19.100 PMID: 32268464
- Heymsfield, S.B.W.T.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med., 2017, 376(15), 1492. PMID: 28402780
- Lahey, R.; Khan, S.S. Trends in obesity and risk of cardiovascular disease. Curr. Epidemiol. Rep., 2018, 5(3), 243-251. doi: 10.1007/s40471-018-0160-1 PMID: 30705802
- Ford, N.D.; Patel, S.A.; Narayan, K.M.V. Obesity in low- and middle-income countries: Burden, drivers, and emerging challenges. Annu. Rev. Public Health, 2017, 38(1), 145-164. doi: 10.1146/annurev-publhealth-031816-044604 PMID: 28068485
- Lee, C.M.Y.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol., 2008, 61(7), 646-653. doi: 10.1016/j.jclinepi.2007.08.012 PMID: 18359190
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol., 2018, 3(4), 280-287. doi: 10.1001/jamacardio.2018.0022 PMID: 29490333
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; Kashyap, S.R. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N. Engl. J. Med., 2017, 376(7), 641-651. doi: 10.1056/NEJMoa1600869 PMID: 28199805
- Sjöström, L.; Lindroos, A.K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.; Narbro, K.; Sjöström, C.D.; Sullivan, M.; Wedel, H. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med., 2004, 351(26), 2683-2693. doi: 10.1056/NEJMoa035622 PMID: 15616203
- Jamialahmadi, T. Reiner, ; Alidadi, M.; Kroh, M.; Simental-Mendia, L.E.; Pirro, M.; Sahebkar, A. Impact of bariatric surgery on pulse wave velocity as a measure of arterial stiffness: A systematic review and meta-analysis. Obes. Surg., 2021, 31(10), 4461-4469. doi: 10.1007/s11695-021-05611-7 PMID: 34319469
- Jamialahmadi, T.; Alidadi, M.; Atkin, S.L.; Kroh, M.; Almahmeed, W.; Moallem, S.A.; Al-Rasadi, K.; Rodriguez, J.H.; Santos, R.D.; Ruscica, M.; Sahebkar, A. Effect of bariatric surgery on flow-mediated vasodilation as a measure of endothelial function: A systematic review and meta-analysis. J. Clin. Med., 2022, 11(14), 4054. doi: 10.3390/jcm11144054 PMID: 35887817
- Jamialahmadi, T Reiner, ; Alidadi, M; Kroh, M; Cardenia, V; Xu, S The effect of bariatric surgery on circulating levels of oxidized low-density lipoproteins is apparently independent of changes in body mass index: A systematic review and meta-analysis. Oxid. Med. Cell. Longev., 2021, 2021 doi: 10.1155/2021/4136071
- Jamialahmadi, T. Reiner, ; Alidadi, M.; Almahmeed, W.; Kesharwani, P.; Al-Rasadi, K.; Eid, A.H.; Rizzo, M.; Sahebkar, A. Effect of bariatric surgery on intima media thickness: A systematic review and meta-analysis. J. Clin. Med., 2022, 11(20), 6056. doi: 10.3390/jcm11206056 PMID: 36294377
- Jamialahmadi, T. Reiner, ; Alidadi, M.; Kroh, M.; Almahmeed, W.; Ruscica, M. The effect of bariatric surgery on circulating levels of Lipoprotein (a): A meta-analysis. BioMed Res. Int., 2022, 2022, 8435133.
- Jamialahmadi, T.; Banach, M.; Almahmeed, W.; Kesharwani, P.; Sahebkar, A. Impact of bariatric surgery on circulating PCSK9 levels as marker of cardiovascular disease risk: A meta-analysis. Arch. Med. Sci., 2022, 18(5), 1372-1377. doi: 10.5114/aoms/152685 PMID: 36160336
- Kanitsoraphan, C.; Rattanawong, P.; Charoensri, S.; Senthong, V. Trimethylamine n-oxide and risk of cardiovascular disease and mortality. Curr. Nutr. Rep., 2018, 7(4), 207-213. doi: 10.1007/s13668-018-0252-z PMID: 30362023
- Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J., 2017, 38(39), 2948-2956. doi: 10.1093/eurheartj/ehx342 PMID: 29020409
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.W.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63. doi: 10.1038/nature09922 PMID: 21475195
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.W.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585. doi: 10.1038/nm.3145 PMID: 23563705
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; Sartor, R.B.; McIntyre, T.M.; Silverstein, R.L.; Tang, W.H.W.; DiDonato, J.A.; Brown, J.M.; Lusis, A.J.; Hazen, S.L. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell, 2016, 165(1), 111-124. doi: 10.1016/j.cell.2016.02.011 PMID: 26972052
- Dehghan, P.; Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Asghari-Jafarabadi, M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose-response meta-analysis. Obes. Rev., 2020, 21(5), e12993. doi: 10.1111/obr.12993 PMID: 32017391
- Narath, S.H.; Mautner, S.I.; Svehlikova, E.; Schultes, B.; Pieber, T.R.; Sinner, F.M.; Gander, E.; Libiseller, G.; Schimek, M.G.; Sourij, H.; Magnes, C. An untargeted metabolomics approach to characterize short-term and long-term metabolic changes after bariatric surgery. PLoS One, 2016, 11(9), e0161425. doi: 10.1371/journal.pone.0161425 PMID: 27584017
- Trøseid, M.; Hov, J.R.; Nestvold, T.K.; Thoresen, H.; Berge, R.K.; Svardal, A.; Lappegård, K.T. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab. Syndr. Relat. Disord., 2016, 14(4), 197-201. doi: 10.1089/met.2015.0120 PMID: 27081744
- Palmisano, S.; Campisciano, G.; Silvestri, M.; Guerra, M.; Giuricin, M.; Casagranda, B.; Comar, M.; de Manzini, N. Changes in gut microbiota composition after bariatric surgery: A new balance to decode. J. Gastrointest. Surg., 2020, 24(8), 1736-1746. doi: 10.1007/s11605-019-04321-x PMID: 31388884
- Higgins, J.P.T.; Green, S. Cochrane handbook for systematic reviews of interventions version 5.0.1. The Cochrane Collaboration. 2008. Available from: www.handbook. cochrane.org
- Wells, G.A.; Shea, B.; OConnell, D.; Peterson, J.; Welch, V.; Losos, M. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses; Oxford, 2000.
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Comprehensive meta-analysis, version 2 Biostat; Englewood NJ, 2005.
- Banach, M.; Serban, C.; Sahebkar, A.; Mikhailidis, D.P.; Ursoniu, S.; Ray, K.K.; Rysz, J.; Toth, P.P.; Muntner, P.; Mosteoru, S. García-García, H.M.; Hovingh, G.K.; Kastelein, J.J.P.; Serruys, P.W. Impact of statin therapy on coronary plaque composition: A systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med., 2015, 13(1), 229. doi: 10.1186/s12916-015-0459-4 PMID: 26385210
- Huang, W.; Zhong, A.; Xu, H.; Xu, C.; Wang, A.; Wang, F.; Li, X.; Liu, Y.; Zou, J.; Zhu, H.; Zheng, X.; Yi, H.; Guan, J.; Yin, S. Metabolomics analysis on obesity-related obstructive sleep apnea after weight loss management: A preliminary study. Front. Endocrinol., 2022, 12, 761547. doi: 10.3389/fendo.2021.761547 PMID: 35046891
- Jomard, A.; Liberale, L.; Doytcheva, P.; Reiner, M.F.; Müller, D.; Visentin, M.; Bueter, M.; Lüscher, T.F.; Vettor, R.; Lutz, T.A.; Camici, G.G.; Osto, E. Effects of acute administration of trimethylamine N-oxide on endothelial function: A translational study. Sci. Rep., 2022, 12(1), 8664. doi: 10.1038/s41598-022-12720-5 PMID: 35606406
- Lee, S.J.; Park, Y.S.; Kim, Y.J.; Han, S.U.; Hwang, G.S.; Han, Y.; Heo, Y.; Ha, E.; Ha, T.K. Changes in trimethylamine-n-oxide levels in obese patients following laparoscopic roux-en-y gastric bypass or sleeve gastrectomy in a korean obesity surgical treatment study (KOBESS). J. Clin. Med., 2021, 10(21), 5091. doi: 10.3390/jcm10215091 PMID: 34768610
- Shi, Q.; Wang, Q.; Zhong, H.; Li, D.; Yu, S.; Yang, H.; Wang, C.; Yin, Z. Roux-en-Y gastric bypass improved insulin resistance via alteration of the human gut microbiome and alleviation of endotoxemia. BioMed Res. Int., 2021, 2021, 1-14. doi: 10.1155/2021/5554991 PMID: 34337024
- Tremaroli, V.; Karlsson, F.; Werling, M. Ståhlman, M.; Kovatcheva-Datchary, P.; Olbers, T.; Fändriks, L.; le Roux, C.W.; Nielsen, J.; Bäckhed, F. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab., 2015, 22(2), 228-238. doi: 10.1016/j.cmet.2015.07.009 PMID: 26244932
- Li, J.V.; Ashrafian, H.; Bueter, M.; Kinross, J.; Sands, C.; le Roux, C.W.; Bloom, S.R.; Darzi, A.; Athanasiou, T.; Marchesi, J.R.; Nicholson, J.K.; Holmes, E. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut, 2011, 60(9), 1214-1223. doi: 10.1136/gut.2010.234708 PMID: 21572120
- Dalla Via, A.; Gargari, G.; Taverniti, V.; Rondini, G.; Velardi, I.; Gambaro, V.; Visconti, G.L.; De Vitis, V.; Gardana, C.; Ragg, E.; Pinto, A.; Riso, P.; Guglielmetti, S. Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-lyase gene (cutC) harbored by enterobacteriaceae. Nutrients, 2019, 12(1), 62. doi: 10.3390/nu12010062 PMID: 31881690
- Juárez-Fernández, M.; Román-Sagüillo, S.; Porras, D.; García-Mediavilla, M.V.; Linares, P.; Ballesteros-Pomar, M.D.; Urioste-Fondo, A.; Álvarez-Cuenllas, B.; González-Gallego, J.; Sánchez-Campos, S.; Jorquera, F.; Nistal, E. Long-term effects of bariatric surgery on gut microbiota composition and faecal metabolome related to obesity remission. Nutrients, 2021, 13(8), 2519. doi: 10.3390/nu13082519 PMID: 34444679
- Sherry, B.H.; Zhang, R.; Garabedian, M.; Berger, J.S.; Heffron, S.P. Changes in tmao levels following bariatric surgery vary by procedure type. Circulation., 2022, 146(S1), A12480-A.
Supplementary files
