Photon detectors and emitters for quantum communication systems and quantum frequency standards

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We presented a brief overview of the results obtained at the Rzhanov Institute of Semiconductor Physics of SB RAS in the field of the development of photon detectors and emitters promising for use in quantum cryptography systems and miniature quantum frequency standards based on the effect of coherent population trapping.

全文:

受限制的访问

作者简介

V. Preobrazhenskii

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pvv@isp.nsc.ru
俄罗斯联邦, Novosibirsk

I. Chistokhin

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
俄罗斯联邦, Novosibirsk

I. Ryabtsev

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
俄罗斯联邦, Novosibirsk

V. Haisler

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
俄罗斯联邦, Novosibirsk

A. Toropov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
俄罗斯联邦, Novosibirsk

参考

  1. Wooters W.K., Zurek W.H. // Nature. 1982. V. 299. P. 802.
  2. Рябцев И.И., Третьяков Д.Б., Коляко А.В. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1689; Ryabtsev I.I., Tretyakov D.B., Kolyako A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 12. P. 1493.
  3. Быковский А.Ю. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 377; Bykovsky A.Y. // Bull. Russ. Acad. Sci. Phys. 2020. V.84. No. 3. P. 289.
  4. Gisin N., Ribordy G., Tittel W., Zbinden H. // Rev. Mod. Phys. 2002. V. 74. No. 1. P. 145.
  5. Gol’tsman G.N., Okunev O.V., Chulkova G.M. et al. // Appl. Phys. Lett. 2001. V. 79. P. 705.
  6. Bouwmeester D., Ekert A.K., Zeilinger A. The physics of quantum information. Berlin: Springer, 2000. 314 p.
  7. Walls D.F., Milburn G.J. Quantum Optics. Berlin: Springer-Verlag, 2008. 437 p.
  8. Michler P. Single semiconductor quantum dots. Berlin: Springer-Verlag, 2009. 389 p.
  9. Michler P. Single quantum dots, fundamentals, applications and new concepts. Berlin: Springer-Verlag, 2003. 347 p.
  10. Wang Z.M. Self-assembled quantum dots. N.Y.: Springer Science+Business Media, 2008. 463 p.
  11. Michalzik R. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Berlin: Springer-Verlag, 2013. 558 p.
  12. Wilsmen C.W., Temkin H., Coldren L. Vertical-cavity surface-emitting lasers: design, fabrication, characterization and application. Cambridge University Press, 1999. 455 p.
  13. Cheng J., Dutta N.K. Vertical-cavity surface-emitting lasers: technology and applications. Amsterdam: Gordon and Breach Science Publishers, 2000. 323 p.
  14. Li H.E., Iga K. Vertical-cavity surface-emitting lasers devices. Berlin: Springer Verlag, 2002. 386 p.
  15. Kitching J. // Appl. Phys. Rev. 2018. V. 5. Art. No. 031302.
  16. Vanier J. // Appl. Phys. B. 2005. V. 81. No. 4. P. 421.
  17. Knappe S., Schwindt P.D.D., Shah V. et al. // Opt. Express. 2005. V. 13. No. 4. P. 1249.
  18. Gruet F., Al-Samaneh A., Kroemer E. et al. // Opt. Express. 2013. V. 21. No. 5. P. 5781.
  19. Tan B., Tian Y., Lin H. et al. // Optics Lett. 2015. V. 40. No. 16. P. 3703.
  20. Kroemer E., Rutkowski J., Maurice V. et al. // Appl. Optics. 2016. V. 55. No. 31. P. 8839.
  21. Скворцов М.Н., Игнатович С.М., Вишняков В.И. и др. // Квант. электрон. 2020. Т. 50. № 6. С. 576; Skvortsov M.N., Ignatovich S.M., Vishnyakov V.I. et al. // Quantum. Electron. 2020. V. 50. No. 6. P. 576.
  22. Петрушков М.О., Путято М.А., Емельянов Е.А. и др. Способ легирования цинком подложек или слоев фосфида индия. Патент РФ № 2686523, кл. H01L 21/223 (2006.01). 2019.
  23. Чистохин И.Б., Путято М.А., Преображенский В.В. и др. Лавинный фотодиод и способ его изготовления. Патент № RU2769749, кл. H01L 31/107 (2006.01), H01L 31/18 (2006.01), B82Y20/00 (2011.01), B82Y40/00 (2011.01) 2022.
  24. http://www.micro-photon-devices.com
  25. Гайслер В.А., Деребезов И.А., Гайслер А.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. № 2. С. 93; Gaisler A.V., Derebezov I. A., Gaisler V. A. et al. // JETP Lett. 2017. V. 105. No. 2. P. 103.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The design of the developed OLFD.

下载 (36KB)
3. Fig. 2. The appearance of the OLFD chip, the working pad is on the left, the contact pad is on the right (a), the OLFD module (b), dark current-voltage characteristics of the OLFD samples (c), the dependence of the dark counting frequency DCR on the overvoltage value Vb (d).

下载 (39KB)
4. Fig. 3. AFM topogram of the structure with Al0.1In0.9As QD (a), the spectral range of emission of AlxIn1–xAs QD of different compositions at T = 295 K (b), the microluminescence spectrum of a single Al0.2In0.8As QD at T = 10 K (c), the dependence g2(t) demonstrating the sub-Poisson type of QD emission statistics (d).

下载 (36KB)
5. Fig. 4. The initial laser structure grown by the MBE method, scanning electron microscopy data (a), micrograph of the 300x300 µm laser chip (b), watt-ampere characteristic of the LVR (c), laser emission spectrum (d), dependences of the LVR generation wavelength on temperature and pump current (d).

下载 (63KB)

版权所有 © Russian Academy of Sciences, 2024