Photon detectors and emitters for quantum communication systems and quantum frequency standards

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We presented a brief overview of the results obtained at the Rzhanov Institute of Semiconductor Physics of SB RAS in the field of the development of photon detectors and emitters promising for use in quantum cryptography systems and miniature quantum frequency standards based on the effect of coherent population trapping.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Preobrazhenskii

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: pvv@isp.nsc.ru
Ресей, Novosibirsk

I. Chistokhin

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
Ресей, Novosibirsk

I. Ryabtsev

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
Ресей, Novosibirsk

V. Haisler

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
Ресей, Novosibirsk

A. Toropov

Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences

Email: pvv@isp.nsc.ru
Ресей, Novosibirsk

Әдебиет тізімі

  1. Wooters W.K., Zurek W.H. // Nature. 1982. V. 299. P. 802.
  2. Рябцев И.И., Третьяков Д.Б., Коляко А.В. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1689; Ryabtsev I.I., Tretyakov D.B., Kolyako A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 12. P. 1493.
  3. Быковский А.Ю. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 377; Bykovsky A.Y. // Bull. Russ. Acad. Sci. Phys. 2020. V.84. No. 3. P. 289.
  4. Gisin N., Ribordy G., Tittel W., Zbinden H. // Rev. Mod. Phys. 2002. V. 74. No. 1. P. 145.
  5. Gol’tsman G.N., Okunev O.V., Chulkova G.M. et al. // Appl. Phys. Lett. 2001. V. 79. P. 705.
  6. Bouwmeester D., Ekert A.K., Zeilinger A. The physics of quantum information. Berlin: Springer, 2000. 314 p.
  7. Walls D.F., Milburn G.J. Quantum Optics. Berlin: Springer-Verlag, 2008. 437 p.
  8. Michler P. Single semiconductor quantum dots. Berlin: Springer-Verlag, 2009. 389 p.
  9. Michler P. Single quantum dots, fundamentals, applications and new concepts. Berlin: Springer-Verlag, 2003. 347 p.
  10. Wang Z.M. Self-assembled quantum dots. N.Y.: Springer Science+Business Media, 2008. 463 p.
  11. Michalzik R. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Berlin: Springer-Verlag, 2013. 558 p.
  12. Wilsmen C.W., Temkin H., Coldren L. Vertical-cavity surface-emitting lasers: design, fabrication, characterization and application. Cambridge University Press, 1999. 455 p.
  13. Cheng J., Dutta N.K. Vertical-cavity surface-emitting lasers: technology and applications. Amsterdam: Gordon and Breach Science Publishers, 2000. 323 p.
  14. Li H.E., Iga K. Vertical-cavity surface-emitting lasers devices. Berlin: Springer Verlag, 2002. 386 p.
  15. Kitching J. // Appl. Phys. Rev. 2018. V. 5. Art. No. 031302.
  16. Vanier J. // Appl. Phys. B. 2005. V. 81. No. 4. P. 421.
  17. Knappe S., Schwindt P.D.D., Shah V. et al. // Opt. Express. 2005. V. 13. No. 4. P. 1249.
  18. Gruet F., Al-Samaneh A., Kroemer E. et al. // Opt. Express. 2013. V. 21. No. 5. P. 5781.
  19. Tan B., Tian Y., Lin H. et al. // Optics Lett. 2015. V. 40. No. 16. P. 3703.
  20. Kroemer E., Rutkowski J., Maurice V. et al. // Appl. Optics. 2016. V. 55. No. 31. P. 8839.
  21. Скворцов М.Н., Игнатович С.М., Вишняков В.И. и др. // Квант. электрон. 2020. Т. 50. № 6. С. 576; Skvortsov M.N., Ignatovich S.M., Vishnyakov V.I. et al. // Quantum. Electron. 2020. V. 50. No. 6. P. 576.
  22. Петрушков М.О., Путято М.А., Емельянов Е.А. и др. Способ легирования цинком подложек или слоев фосфида индия. Патент РФ № 2686523, кл. H01L 21/223 (2006.01). 2019.
  23. Чистохин И.Б., Путято М.А., Преображенский В.В. и др. Лавинный фотодиод и способ его изготовления. Патент № RU2769749, кл. H01L 31/107 (2006.01), H01L 31/18 (2006.01), B82Y20/00 (2011.01), B82Y40/00 (2011.01) 2022.
  24. http://www.micro-photon-devices.com
  25. Гайслер В.А., Деребезов И.А., Гайслер А.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. № 2. С. 93; Gaisler A.V., Derebezov I. A., Gaisler V. A. et al. // JETP Lett. 2017. V. 105. No. 2. P. 103.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The design of the developed OLFD.

Жүктеу (36KB)
3. Fig. 2. The appearance of the OLFD chip, the working pad is on the left, the contact pad is on the right (a), the OLFD module (b), dark current-voltage characteristics of the OLFD samples (c), the dependence of the dark counting frequency DCR on the overvoltage value Vb (d).

Жүктеу (39KB)
4. Fig. 3. AFM topogram of the structure with Al0.1In0.9As QD (a), the spectral range of emission of AlxIn1–xAs QD of different compositions at T = 295 K (b), the microluminescence spectrum of a single Al0.2In0.8As QD at T = 10 K (c), the dependence g2(t) demonstrating the sub-Poisson type of QD emission statistics (d).

Жүктеу (36KB)
5. Fig. 4. The initial laser structure grown by the MBE method, scanning electron microscopy data (a), micrograph of the 300x300 µm laser chip (b), watt-ampere characteristic of the LVR (c), laser emission spectrum (d), dependences of the LVR generation wavelength on temperature and pump current (d).

Жүктеу (63KB)

© Russian Academy of Sciences, 2024