Production and electronic transport in thin films of strontium iridate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the study of epitaxial thin films of SrIrO3 are presented, data on growth technology, crystal structure and electronic transport are presented. In SrIrO3 films received in a mixture of Ar and O2 gases, the dependence of resistance on temperature has a metallic character. For the films deposited in pure argon, the resistance versus temperature curves shows both a metallic and a dielectric behavior. It depends on the deposition pressure and the deposition temperature. The activation energy was calculated for dielectric samples and compared with the activation energy for Sr2IrO4 films.

About the authors

I. E. Moskal

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: ivan.moscal@yandex.ru
Russian Federation, Moscow, 125009; Dolgoprudny, 141701

A. M. Petrzhik

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russian Federation, Moscow, 125009

Yu. V. Kislinskii

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russian Federation, Moscow, 125009

A. V. Shadrin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: ivan.moscal@yandex.ru
Russian Federation, Moscow, 125009; Dolgoprudny, 141701

G. A. Ovsyannikov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Russian Federation, Moscow, 125009

N. V. Dubitskiy

Russian Technological University – MIREA

Email: ivan.moscal@yandex.ru
Russian Federation, Moscow, 119454

References

  1. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 024501.
  2. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // J. Surf. Invest. X-Ray Synchrotron Neutron Techn. 2020. V. 14. No. 3. P. 547.
  3. Ovsyannikov G.A., Constantinian K.Y., Shmakov V.A. et al. // Phys. Rev. B. 2023. V. 107. Art. No. 144419.
  4. Kazunori Nishio, Harold Y. Hwang // APL Materials. 2016. V. 4. Art. No. 036102.
  5. Gutierrez-Llorente A., Iglesias L., Rodr’iguez-Gonz’alez B., Rivadulla F. // APL Materials. 2018. V. 6. Art. No. 091101.
  6. Fuentes V., Vasic B., Konstantinovic Z. et al. // J. Magn. Magn. Mater. 2020. V. 501. Art. No. 166419.
  7. Петржик А.М., Cristiani G., Логвенов Г. и др. // Письма в ЖТФ. 2017. Т. 43. № 12. С. 25; Petrzhik A.M., Cristiani G., Logvenov G. et al. // Tech. Phys. Lett. 2017. V. 43. No. 6. P. 554.
  8. Biswas A., Jeong Y.H. // Current Appl. Phys. 2017. V. 17. P. 605.
  9. Кислинский Ю.В., Овсянников Г.А., Петржик А.М. и др. // ФТТ. 2015. Т. 57. № 12. С. 2446; Kislinskii Yu.V., Ovsyannikov G.A., Petrzhik A.M. et al. // Phys. Solid State. 2015. V. 57. No. 12. P. 2519.
  10. Gao G., Schlottmann P. // Rep. Prog. Phys. 2018. V. 81. Art. No. 042502.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences