Fabrication of GRIN microstructures by two-photon lithography

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The method of two-photon lithography is used to fabricate GRIN microstructures. Test rectangular structures with sizes 25 × 25 × 3 micrometers were used with varying laser intensity by linear or gaussian distribution in one dimension. The resulting refractive index has been tuned in the range of 0.03. The suggested method can be applied to produce arbitrarily shaped 3D GRIN micro-optical elements.

Авторлар туралы

M. Aparin

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

T. Baluyan

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. Sharipova

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

M. Sirotin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

E. Lyubin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

I. Soboleva

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

V. Bessonov

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

A. Fedyanin

Lomonosov Moscow State University

Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow

Әдебиет тізімі

  1. Gomez-Reino C., Perez M., Bao C. Gradient-index optics: fundamentals and applications. Springer, 2002. 239 p.
  2. Hwang Y., Phillips N., Dale E.O. et al. // Opt. Express. 2022. V. 30. No. 8. P. 12294.
  3. Gomez-Reino C., Perez M.V., Bao C., Flores-Arias T.M. // Laser Photon. Rev. 2008. V. 2. No. 3. P. 203.
  4. Kundal S., Bhatnagar A., Sharma R. Optical and wireless technologies, Springer, 2022. 443 p.
  5. Pickering M.A., Taylor R.L., Moore D.T. // Appl. Opt. 1986. V. 25. No. 19. P. 3364.
  6. Ohmi S., Sakai H., Asahara Y. et al. // Appl. Opt. 1988. V. 27. No. 3. P. 496.
  7. Sinai P. // Appl. Opt. 1971. V. 10. No. 1. P. 99.
  8. Liu J.H., Yang P.C., Chiu Y.H. // J. Polym. Sci. A. 2006. V. 44. No. 20. P. 5933.
  9. Liu J.H., Chiu Y.H. // Opt. Lett. 2009. V. 34. No. 9. P. 1393.
  10. Mingareev I., Kang M., Truman M. et al. // Opt. Laser Technol. 2020. V. 126. Art. No. 106058.
  11. Dylla-Spears R., Yee T.D., Sasan K. et al. // Sci. Advances. 2020. V. 6. No. 47. Art. No. eabc7429.
  12. Mao M., He J., Li X. et al. // Micromachines. 2017. V. 8. No. 4. P. 113.
  13. Sharipova M.I., Baluyan T.G., Abrashitova K.A. et al. // Opt. Mater. Express. 2021. V. 11. No. 2. P. 371.
  14. Zhou X., Hou Y., Lin J. // AIP Advances. 2005. V. 5. No. 3. Art. No. 030701.
  15. Ocier R.C., Richards C.A., Bacon-Brown D.A. et al. // Light Sci. Appl. 2020. V. 9. Art. No. 196.
  16. Žukauskas A., Matulaitienė I., Paipulas D. et al. // Laser Photon. Rev. 2015. V. 9. No. 6. P. 706.
  17. Pertoldi L., Zega V., Comi C., Osellame R. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 175102.
  18. Drexler W., Fujimoto J.G. Optical coherence tomography. Technology and applications. Springer, 2008. 1327 p.
  19. Sirotin M.A., Romodina M.N., Lyubin E.V. et al. // Biomed. Opt. Express. 2022. V. 13. No. 1. P. 14.
  20. Safronov K.R., Gulkin D.N., Antropov I.M. et al. // ACS Nano. 2020. V. 14. No. 8. P. 10428.
  21. Safronov K.R., Bessonov V.O., Akhremenkov D.V. et al. // Laser Photon. Rev. 2022. V. 16. No. 4. Art. No. 2100542.
  22. Giessibl F.J. // Rev. Mod. Phys. 2003. V. 75. No. 3. P. 949.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (341KB)
3.

Жүктеу (60KB)
4.

Жүктеу (918KB)
5.

Жүктеу (949KB)

© М.Д. Апарин, Т.Г. Балуян, М.И. Шарипова, М.А. Сиротин, Е.В. Любин, И.В. Соболева, В.О. Бессонов, А.А. Федянин, 2023