Fluorescent Photoswitchable Systems
- Autores: Budyka М.F.1
- 
							Afiliações: 
							- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 44, Nº 6 (2025)
- Páginas: 3-29
- Seção: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://rjpbr.com/0207-401X/article/view/686497
- DOI: https://doi.org/10.31857/S0207401X25060018
- ID: 686497
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Fluorescent photoswitchable systems (FPSS) are organic molecular and organic-inorganic hybrid nanoscale systems that combine the properties of photochromes and fluorophores, i.e. the ability to change their fluorescent properties, intensity and/or emission spectrum under the action of light. The structure and mechanisms of action of FPSS of different types are considered, examples of application of FPSS in super-resolution microscopy, for visualisation of biological and inorganic nano-objects, recording of optical information, for anti-counterfeiting, as photonic molecular logic gates are given.
Texto integral
 
												
	                        Sobre autores
М. Budyka
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: budyka@icp.ac.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
Bibliografia
- Bouas-Laurent H., Dürr H. // Org. Photochrom., Pure Appl. Chem. 2001. V. 73. P. 639. https://doi.org/10.1351/pac200173040639
- Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Pianowski Z.L. Wiley-VCH GmbH, 2022. https://doi.org/10.1002/9783527827626
- Braslavsky S.E. // Pure Appl. Chem. 2007. V. 79. P. 293. https://doi.org/10.1351/pac200779030293
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. N.Y.: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
- Parthenopoulos D.A., Rentzepis P.M. // Science. 1989. V. 245. P. 843. https://doi.org/10.1126/science.245.4920.843
- Fukaminato T., Doi T., Tamaoki N. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4984. https://doi.org/10.1021/ja110686t
- Dvornikov A.S., Walker P., Rentzepis P.M. // J. Phys. Chem. A. 2009. V. 113. P. 13633. https://doi.org/10.1021/jp905655z
- Shirinyan V.Z., Lonshakov D.V., Lvov A.G., Krayushkin M.M. // Uspekhi Khimii. 2013. V. 82. P. 511. https://doi.org/10.1070/RC2013v082n06ABEH004339
- Olesinska-Monch M., Deo C. // Chem. Commun. 2023. V. 59. P. 660. https://doi.org/10.1039/d2cc05870g
- Nevskyi O., Sysoiev D., Dreier J. et al. // Small. 2018. V. 14. P. 1703333. https://doi.org/10.1002/smll.201703333
- Biteen J., Willets K.A. // Chem. Rev. 2017. V. 117. P. 7241. https://doi.org/10.1021/acs.chemrev.7b00242
- Chen T., Dong B., Chen K. et al. // Ibid. P. 7510. https://doi.org/10.1021/acs.chemrev.6b00673
- Irie M., Fukaminato T., Matsuda K., Kobatake S. // Ibid. 2014. V. 114. P. 12174. https://doi.org/10.1021/cr500249p
- Kim D., Park S.Y. // Adv. Optical Mater. 2018. P. 1800678. https://doi.org/10.1002/adom.201800678
- Budyka M.F. // Uspekhi Khimii. 2017. V. 86. P. 181. https://doi.org/10.1070/RCR4657
- Erbas-Cakmak S., Kolemen S., Sedgwick A.C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228. https://doi.org/10.1039/c7cs00491e
- Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695. https://doi.org/10.1016/j.ccr.2020.213695
- Mockl L., Lamb D.C., Brauchle C. // Angew. Chem. Int. Ed. 2014. V. 53. P. 13972. https://doi.org/10.1002/anie.201410265
- Blom H., Widengren J. // Chem. Rev. 2017. V. 117. P. 7377. https://doi.org/10.1021/acs.chemrev.6b00653
- von Diezmann L., Shechtman Y., Moerner W.E. // Ibid. P. 7244. https://doi.org/10.1021/acs.chemrev.6b00629
- Deschout H., Lukes T., Sharipov A. et al. // Nat. Commun. 2016. V. 7. P. 13693. https://doi.org/10.1038/ncomms13693
- Prakash K., Diederich B., Heintzmann R., Schermelleh L. // Phil. Trans. R. Soc. A. 2022. V. 380. P. 20210110. https://doi.org/10.1098/rsta.2021.0110
- Balzarotti F., Eilers Y., Gwosch K.C. et al. // Science. 2017. V. 355. P. 606. https://doi.org/10.1126/science.aak9913
- Schmidt R., Weihs T., Wurm C.A. et al. // Nat. Commun. 2021. V. 12. P. 1478. https://doi.org/10.1038/s41467-021-21652-z
- Hauser M., Wojcik M., Kim D. et al. // Chem. Rev. 2017. V. 117. P. 7428. https://doi.org/10.1021/acs.chemrev.6b00604
- Roubinet B., Weber M., Shojaei H. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6611. https://doi.org/10.1021/jacs.7b00274
- Irie M., Morimoto M. // Bull. Chem. Soc. Jpn. 2018. V. 91. P. 237. https://doi.org/10.1246/bcsj.20170365
- Wu Y., Zhu Y., Yao C. et al. // J. Mater. Chem. C. 2023. V. 11. P. 15393. https://doi.org/10.1039/d3tc02383d
- Heilemann M., Dedecker P., Hofkens J., Sauer M. // Laser Photo. Rev. 2009. V. 3. P. 180. https://doi.org/10.1002/lpor.200810043
- Fukaminato T., Ishida S., Metivier R. // NPG Asia Mater. 2018. V. 10. P. 859. https://doi.org/10.1038/s41427-018-0075-9
- Zhong W., Shang L. // Chem. Sci. 2024. V. 15. P. 6218. https://doi.org/10.1039/d4sc00114a
- Huang F., Anslyn E.V. // Chem. Rev. 2015. V. 115. P. 6999. https://doi.org/10.1021/acs.chemrev.5b00352
- Furstenberg A., Heilemann M. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 14919. https://doi.org/10.1039/c3cp52289j
- Kortekaas L., Browne W.R. // Chem. Soc. Rev. 2019. V. 48. P. 3406.https://doi.org/10.1039/c9cs00203k
- Hu D., Tian Z., Wu W., Wan W., Li A.D.Q. // J. Am. Chem. Soc. 2008. V. 130. P. 15279. https://doi.org/10.1021/ja805948u
- Mandal M., Banik D., Karak A., Manna S.K., Mahapatra A.K. // ACS Omega. 2022. V. 7. P. 36988. https://doi.org/10.1021/acsomega.2c04969
- Irie M. // Chem. Rev. 2000. V. 100. P. 1685. https://doi.org/10.1021/cr980069d
- Lvov A.G., Khusniyarov M.M., Shirinian V.Z. // J. Photochem. Photobiol. C: Photochem. Rev. 2018. V. 36. P. 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002
- Matsuda K., Irie M. // J. Photochem. Photobiol., C. 2004. V. 5. P. 169. https://doi.org/10.1016/j.jphotochemrev.2004.07.003
- Li Z., Zeng X., Gao C. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215451. https://doi.org/10.1016/j.ccr.2023.215451
- Fukaminato T. // J. Photochem. Photobiol., C. 2011. V. 12. P. 177. https://doi.org/10.1016/j.jphotochemrev.2011.08.006
- Pang S.C., Hyun H., Lee S. et al. // Chem. Commun. 2012. V. 48. P. 3745. https://doi.org/10.1039/C2CC30738C
- Jeong Y.-C., Yang S.I., Ahn K.-H., Kim E. // Ibid. 2005. P. 2503. https://doi.org/10.1039/B501324K
- Jeong Y.-C., Yang S.I., Kim E., Ahn K.-H. // Tetrahedron. 2006. V. 62. P. 5855. https://doi.org/10.1016/j.tet.2006.04.029
- Jeong Y.-C., Park D.G., Lee I.S., Yang S.I., Ahn K.-H. // J. Mater. Chem. 2009. V. 19. P. 97. https://doi.org/10.1039/b814040e
- Taguchi M., Nakagawa T., Nakashima T., Kawai T. // Ibid. 2011. V. 21. P. 17425. https://doi.org/10.1039/c1jm12993g
- Kashihara R., Morimoto M., Ito S., Miyasaka H., Irie M. // J. Am. Chem. Soc. 2017. V. 139. P. 16498. https://doi.org/10.1021/jacs.7b10697
- Takagi Y., Morimoto M., Kashihara R. et al. // Tetrahedron. 2017. V. 73. P. 4918. https://doi.org/10.1016/j.tet.2017.03.040
- Nevskyi O., Sysoiev D., Oppermann A., Huhn T., Woll D. // Angew. Chem. Int. Ed. 2016. V. 55. P. 12698. https://doi.org/10.1002/anie.201606791
- Roubinet B., Bossi M.L., Alt P. et al. // Ibid. P. 15429. https://doi.org/10.1002/anie.201607940
- Uno K., Bossi M.L., Belov V.N., Irie M., Hell S.W. // Chem. Commun. 2020. V. 56. P. 2198. https://doi.org/10.1039/c9cc09390g
- Nakagawa T., Miyasaka Y., Yokoyama Y. // Ibid. 2018. V. 54. P. 3207. https://doi.org/10.1039/c8cc00566d
- Andresen M., Wahl M.C., Stiel A.C. et al. // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 13070. https://doi.org/10.1073/pnas.0502772102
- Grotjohann T., Testa I., Reuss M. et al. // eLife. 2012. V. 1. e00248. https://doi.org/10.7554/eLife.00248
- Grotjohann T., Testa I., Leutenegger M. et al. // Nature. 2011. V. 478. P. 204. https://doi.org/10.1038/nature10497
- Liu G., Leng J., Zhou Q. et al. // Dyes Pigm. 2022. V. 203. P. 110361. https://doi.org/10.1016/j.dyepig.2022.110361
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // Russ. Nanotechnol. 2012. V. 7. No. 5–6. P. 89. https://doi.org/10.1134/S1995078012030032
- de Silva A.P., Uchiyama S. // Nat. Nanotechnol. 2007. V. 2. P. 399. https://doi.org/10.1038/nnano.2007.188
- Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481. https://doi.org/10.1021/cr068403q
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // High Energy Chem. 2012. V. 46. P. 369. https://doi.org/10.1134/S0018143912040054
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218. https://doi.org/10.1002/slct.202004721
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta, Part A. 2022. V. 267. P. 120565. https://doi.org/10.1016/j.saa.2021.120565
- Budyka M.F., Fedulova J.A., Gavrishova T.N. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137. https://doi.org/10.1039/d2cp02865d
- Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectrochim. Acta, Part A. 2024. V. 320. P. 124666. https://doi.org/10.1016/j.saa.2024.124666
- Budyka M.F., Li V.M., Gavrishova T.N. // High Energy Chem. 2025. V. 59. P. 22. https://doi.org/10.1134/S0018143924701431
- Budyka M.F. // High Energy Chem. 2007. V. 41. P. 213. https://doi.org/10.1134/S0018143907030058
- Lord S.J., Conley N.R., Lee H.D. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 9204. https://doi.org/10.1021/ja802883k
- Homan R.A., Lapek J.D., Woo C.M. et al. // Nat. Rev. Methods Primers. 2024. V. 4. P. 30. https://doi.org/10.1038/s43586-024-00308-4
- Lord S.J., Lee H.D., Samuel R. et al. // J. Phys. Chem. B. 2010. V. 114. P. 14157. https://doi.org/10.1021/jp907080r
- Belov V.N., Wurm C.A., Boyarskiy V.P., Jakobs S., Hell S.W. // Angew. Chem. Int. Ed. 2010. V. 49. P. 3520. https://doi.org/10.1002/anie.201000150
- Hauke S., von Appen A., Quidwai T., Ries J., Wombacher R. // Chem. Sci. 2017. V. 8. P. 559. https://doi.org/10.1039/c6sc02088g
- Maurel D., Banala S., Laroche T., Johnsson K. // ACS Chem. Biol. 2010. V. 5. P. 507. https://doi.org/10.1021/cb1000229
- Gong Q., Zhang X., Li W. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21992. https://doi.org/10.1021/jacs.2c08947
- Lincoln R., Bossi M.L., Remmel M. et al. // Nat. Chem. 2022. V. 14. P. 1013. https://doi.org/10.1038/s41557-022-00995-0
- Vaughan J.C., Jia S., Zhuang X.W. // Nat. Methods. 2012. V. 9. P. 1181. https://doi.org/10.1038/nmeth.2214
- Go G., Jeong U., Park H., Go S., Kim D. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202405246. https://doi.org/10.1002/anie.202405246
- Efros A.L., Nesbitt D.J. // Nat. Nanotechn. 2016. V. 11. P. 661. https://doi.org/10.1038/nnano.2016.140
- Shi J., Sun W., Utzat H. et al. // Ibid. 2021. V. 16. P. 1355. https://doi.org/10.1038/s41565-021-01016-w
- Du J., Yang Z., Lin H., Poelman D. // Respons. Mater. 2024. V. 2. P. e20240004. https://doi.org/10.1002/rpm.20240004
- Knibbe H., Rehm D., Weller A. // Ber. Bunsen-Ges. Phys. Chem. 1969. V. 73. P. 839. https://doi.org/10.1002/bbpc.19690730819
- Fukaminato T., Tanaka M., Doi T. et al. // Photochem. Photobiol. Sci. 2010. V. 9. P. 181. https://doi.org/10.1039/b9pp00131j
- Braslavsky S.E., Fron E., Rodriguez H.B. et al. // Ibid. 2008. V. 7. P. 1444. https://doi.org/10.1039/b810620g
- Irie M., Fukaminato T., Sasaki T., Tamai N., Kawai T. // Nature. 2002. V. 420. P. 759. https://doi.org/10.1038/420759a
- Fukaminato T., Sasaki T., Kawai T., Tamai N., Irie M. // J. Am. Chem. Soc. 2004. V. 126. P. 14843. https://doi.org/10.1021/ja047169n
- Galimov D.I., Tuktarov A.R., Sabirov D.Sh., Khuzin A.A., Dzhemilev U.M. // J. Photochem. Photobiol. A. 2019. V. 375. P. 64. https://doi.org/10.1016/j.jphotochem.2019.02.017
- Jeong J., Yun E., Choi Y. et al. // Chem. Commun. 2011. V. 47. P. 10668. https://doi.org/10.1039/c1cc14041h
- Budyka M.F. // Org. Photonics Photovolt. 2015. V. 3. P. 101. https://doi.org/10.1515/oph-2015-0001
- Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173. https://doi.org/10.1021/ar200214k
- Ordronneau L., Aubert V., Metivier R. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 2599. https://doi.org/10.1039/c2cp23333a
- Ordronneau L., Boixel J., Aubert V. et al. // Org. Biomol. Chem. 2014. V. 12. P. 979. https://doi.org/10.1039/c3ob42119h
- Budyka M.F., Li V.M. // ChemPhysChem. 2017. V. 18. P. 260. https://doi.org/10.1002/cphc.201600722
- Budyka M.F., Lee V.M., Gavrishova T.N. // J. Photochem. Photobiol. A. 2014. V. 279. P. 59. https://doi.org/10.1016/j.jphotochem.2014.01.004
- Balzani V., Cola L., Prodi L., Scandola F. // Pure Appl. Chem. 1990. V. 62. P. 1457. https://doi.org/10.1351/pac199062081457
- Zhu F., Hou X.-F., Wang J. et al. // Asian J. Org. Chem. 2024. P. e202400385. https://doi.org/10.1002/ajoc.202400385
- Andréasson J., Straight S.D., Kodis G. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 16259. https://doi.org/10.1021/ja0654579
- Andreasson J., Pischel U., Straight S.D. et al. // Ibid. 2011. V. 133. P. 11641. https://doi.org/10.1021/ja203456h
- Andreasson J., Straight S.D., Bandyopadhyay S. et al. // Angew. Chem. Int. Ed. 2007. V. 46. P. 958. https://doi.org/10.1002/anie.200603856
- Andreasson J., Straight S.D., Moore T.A., Moore A.L., Gust D. // Chem. Eur. J. 2009. V. 15. P. 3936. https://doi.org/10.1002/chem.200900043
- Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855. https://doi.org/10.1039/C5RA06628J
- Doddi S., Narayanaswamy K., Ramakrishna B., Singh S.P., Bangal P.R. // J. Fluoresc. 2016. V. 26. P. 1939. https://doi.org/10.1007/s10895-016-1886-0
- Yan Q., Xu J., Luo M. et al. // Dyes Pigm. 2023. V. 214. P. 111231. https://doi.org/10.1016/j.dyepig.2023.111231
- Hu Z., Zhang Q., Xue M., Sheng Q., Liu Y. // Opt. Mater. 2008. V. 30. P. 851. https://doi.org/10.1016/j.optmat.2007.03.012
- Yao Z., Wang X., Liu J. et al. // Chem. Commun. 2023. V. 59. P. 2469. https://doi.org/10.1039/d2cc06707b
- Naren G., Hsu C.W., Li S. et al. // Nat. Commun. 2019. V. 10. P. 3996. https://doi.org/10.1038/s41467-019-11885-4
- Yildiz I., Deniz E., Raymo F. // Chem. Soc. Rev. 2009. V. 38. P. 1859. https://doi.org/10.1039/b804151m
- Credi A. // New J. Chem. 2012. V. 36. P. 1925. https://doi.org/10.1039/c2nj40335h
- Chashchikhin O.V., Budyka M.F. // High Energy Chem. 2017. V. 51. P. 449. https://doi.org/10.1134/S0018143918010022
- Zhao J.-L., Li M.-H., Cheng Y.-M. et al. // Coord. Chem. Rev. 2023. V. 475. P. 214918. https://doi.org/10.1016/j.ccr.2022.214918
- Budyka M.F., Chashchikhin O.V., Nikulin P.A. // Russ. Nanotechnol. 2016. V. 11. N. 1–2. P. 67. https://doi.org/10.1134/S199507801601002X
- Chashchikhin O.V., Budyka M.F., Gavrishova T.N., Li V.M. // RSC Adv. 2017. V. 7. P. 2236. https://doi.org/10.1039/C6RA27577J
- Liu M., Tang G., Liu Y., Jiang F. // J. Phys. Chem. Lett. 2024. V. 15. P. 1975. https://doi.org/10.1021/acs.jpclett.3c03413
- Diaz S., Menendez G., Etchehon M. et al. // ACS Nano. 2011. V. 5. P. 2795. https://doi.org/10.1021/nn103243c
- Zhu L., Zhu M.-Q., Hurst J.K., Li A.D.Q. // J. Am. Chem. Soc. 2005. V. 127. P. 8968. https://doi.org/10.1021/ja0423421
- Han G., Mokari T., Ajo-Franklin C., Cohen B.E. // Ibid. 2008. V. 130. P. 15811. https://doi.org/10.1021/ja804948s
- Diaz S.A., Giordano L., Jovin T.M., Jares-Erijman E.A. // Nano Lett. 2012. V. 12. P. 3537. https://doi.org/10.1021/nl301093s
- Budyka M.F., Nikulin P.A., Gavrishova T.N., Chashchikhin O.V. // ChemPhotoChem. 2021. V. 5. P. 582. https://doi.org/10.1002/cptc.202000285
- Budyka M.F., Nikulin P.A. // High Energy Chem. 2021. V. 55. P. 436. https://doi.org/10.31857/S0023119321060036
- Oneil C.E., Jackson J.M., Shim S.-H., Soper S.A. // Anal. Chem. 2016. V. 88. P. 3686. https://doi.org/10.1021/acs.analchem.5b04472
- Zhang Y., Lucas J.M., Song P. et al. // Proc. Natl. Acad. Sci. U.S.A. 2015. V. 112. P. 8959. https://doi.org/10.1073/pnas.1502005112
- Andoy N.M., Zhou X., Choudhary E. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 1845. https://doi.org/10.1021/ja309948y
- Chen X., Hou X.-F., Chen X.-M., Li Q. // Nat. Commun. 2024. V. 15. P. 5401. https://doi.org/10.1038/s41467-024-49670-7
- Wang L., Zhong W., Gao W., Liu W., Shang L. // Chem. Eng. J. 2024. V. 479. P. 147490. https://doi.org/10.1016/j.cej.2023.147490
- https://www.sciencedirect.com
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


























