Fluorescent Photoswitchable Systems
- Authors: Budyka М.F.1
- 
							Affiliations: 
							- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
 
- Issue: Vol 44, No 6 (2025)
- Pages: 3-29
- Section: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://rjpbr.com/0207-401X/article/view/686497
- DOI: https://doi.org/10.31857/S0207401X25060018
- ID: 686497
Cite item
Abstract
Fluorescent photoswitchable systems (FPSS) are organic molecular and organic-inorganic hybrid nanoscale systems that combine the properties of photochromes and fluorophores, i.e. the ability to change their fluorescent properties, intensity and/or emission spectrum under the action of light. The structure and mechanisms of action of FPSS of different types are considered, examples of application of FPSS in super-resolution microscopy, for visualisation of biological and inorganic nano-objects, recording of optical information, for anti-counterfeiting, as photonic molecular logic gates are given.
Full Text
 
												
	                        About the authors
М. F. Budyka
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: budyka@icp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
References
- Bouas-Laurent H., Dürr H. // Org. Photochrom., Pure Appl. Chem. 2001. V. 73. P. 639. https://doi.org/10.1351/pac200173040639
- Molecular Photoswitches: Chemistry, Properties, and Applications / Ed. Pianowski Z.L. Wiley-VCH GmbH, 2022. https://doi.org/10.1002/9783527827626
- Braslavsky S.E. // Pure Appl. Chem. 2007. V. 79. P. 293. https://doi.org/10.1351/pac200779030293
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. N.Y.: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
- Parthenopoulos D.A., Rentzepis P.M. // Science. 1989. V. 245. P. 843. https://doi.org/10.1126/science.245.4920.843
- Fukaminato T., Doi T., Tamaoki N. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 4984. https://doi.org/10.1021/ja110686t
- Dvornikov A.S., Walker P., Rentzepis P.M. // J. Phys. Chem. A. 2009. V. 113. P. 13633. https://doi.org/10.1021/jp905655z
- Shirinyan V.Z., Lonshakov D.V., Lvov A.G., Krayushkin M.M. // Uspekhi Khimii. 2013. V. 82. P. 511. https://doi.org/10.1070/RC2013v082n06ABEH004339
- Olesinska-Monch M., Deo C. // Chem. Commun. 2023. V. 59. P. 660. https://doi.org/10.1039/d2cc05870g
- Nevskyi O., Sysoiev D., Dreier J. et al. // Small. 2018. V. 14. P. 1703333. https://doi.org/10.1002/smll.201703333
- Biteen J., Willets K.A. // Chem. Rev. 2017. V. 117. P. 7241. https://doi.org/10.1021/acs.chemrev.7b00242
- Chen T., Dong B., Chen K. et al. // Ibid. P. 7510. https://doi.org/10.1021/acs.chemrev.6b00673
- Irie M., Fukaminato T., Matsuda K., Kobatake S. // Ibid. 2014. V. 114. P. 12174. https://doi.org/10.1021/cr500249p
- Kim D., Park S.Y. // Adv. Optical Mater. 2018. P. 1800678. https://doi.org/10.1002/adom.201800678
- Budyka M.F. // Uspekhi Khimii. 2017. V. 86. P. 181. https://doi.org/10.1070/RCR4657
- Erbas-Cakmak S., Kolemen S., Sedgwick A.C. et al. // Chem. Soc. Rev. 2018. V. 47. P. 2228. https://doi.org/10.1039/c7cs00491e
- Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. P. 213695. https://doi.org/10.1016/j.ccr.2020.213695
- Mockl L., Lamb D.C., Brauchle C. // Angew. Chem. Int. Ed. 2014. V. 53. P. 13972. https://doi.org/10.1002/anie.201410265
- Blom H., Widengren J. // Chem. Rev. 2017. V. 117. P. 7377. https://doi.org/10.1021/acs.chemrev.6b00653
- von Diezmann L., Shechtman Y., Moerner W.E. // Ibid. P. 7244. https://doi.org/10.1021/acs.chemrev.6b00629
- Deschout H., Lukes T., Sharipov A. et al. // Nat. Commun. 2016. V. 7. P. 13693. https://doi.org/10.1038/ncomms13693
- Prakash K., Diederich B., Heintzmann R., Schermelleh L. // Phil. Trans. R. Soc. A. 2022. V. 380. P. 20210110. https://doi.org/10.1098/rsta.2021.0110
- Balzarotti F., Eilers Y., Gwosch K.C. et al. // Science. 2017. V. 355. P. 606. https://doi.org/10.1126/science.aak9913
- Schmidt R., Weihs T., Wurm C.A. et al. // Nat. Commun. 2021. V. 12. P. 1478. https://doi.org/10.1038/s41467-021-21652-z
- Hauser M., Wojcik M., Kim D. et al. // Chem. Rev. 2017. V. 117. P. 7428. https://doi.org/10.1021/acs.chemrev.6b00604
- Roubinet B., Weber M., Shojaei H. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6611. https://doi.org/10.1021/jacs.7b00274
- Irie M., Morimoto M. // Bull. Chem. Soc. Jpn. 2018. V. 91. P. 237. https://doi.org/10.1246/bcsj.20170365
- Wu Y., Zhu Y., Yao C. et al. // J. Mater. Chem. C. 2023. V. 11. P. 15393. https://doi.org/10.1039/d3tc02383d
- Heilemann M., Dedecker P., Hofkens J., Sauer M. // Laser Photo. Rev. 2009. V. 3. P. 180. https://doi.org/10.1002/lpor.200810043
- Fukaminato T., Ishida S., Metivier R. // NPG Asia Mater. 2018. V. 10. P. 859. https://doi.org/10.1038/s41427-018-0075-9
- Zhong W., Shang L. // Chem. Sci. 2024. V. 15. P. 6218. https://doi.org/10.1039/d4sc00114a
- Huang F., Anslyn E.V. // Chem. Rev. 2015. V. 115. P. 6999. https://doi.org/10.1021/acs.chemrev.5b00352
- Furstenberg A., Heilemann M. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 14919. https://doi.org/10.1039/c3cp52289j
- Kortekaas L., Browne W.R. // Chem. Soc. Rev. 2019. V. 48. P. 3406.https://doi.org/10.1039/c9cs00203k
- Hu D., Tian Z., Wu W., Wan W., Li A.D.Q. // J. Am. Chem. Soc. 2008. V. 130. P. 15279. https://doi.org/10.1021/ja805948u
- Mandal M., Banik D., Karak A., Manna S.K., Mahapatra A.K. // ACS Omega. 2022. V. 7. P. 36988. https://doi.org/10.1021/acsomega.2c04969
- Irie M. // Chem. Rev. 2000. V. 100. P. 1685. https://doi.org/10.1021/cr980069d
- Lvov A.G., Khusniyarov M.M., Shirinian V.Z. // J. Photochem. Photobiol. C: Photochem. Rev. 2018. V. 36. P. 1. https://doi.org/10.1016/j.jphotochemrev.2018.04.002
- Matsuda K., Irie M. // J. Photochem. Photobiol., C. 2004. V. 5. P. 169. https://doi.org/10.1016/j.jphotochemrev.2004.07.003
- Li Z., Zeng X., Gao C. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215451. https://doi.org/10.1016/j.ccr.2023.215451
- Fukaminato T. // J. Photochem. Photobiol., C. 2011. V. 12. P. 177. https://doi.org/10.1016/j.jphotochemrev.2011.08.006
- Pang S.C., Hyun H., Lee S. et al. // Chem. Commun. 2012. V. 48. P. 3745. https://doi.org/10.1039/C2CC30738C
- Jeong Y.-C., Yang S.I., Ahn K.-H., Kim E. // Ibid. 2005. P. 2503. https://doi.org/10.1039/B501324K
- Jeong Y.-C., Yang S.I., Kim E., Ahn K.-H. // Tetrahedron. 2006. V. 62. P. 5855. https://doi.org/10.1016/j.tet.2006.04.029
- Jeong Y.-C., Park D.G., Lee I.S., Yang S.I., Ahn K.-H. // J. Mater. Chem. 2009. V. 19. P. 97. https://doi.org/10.1039/b814040e
- Taguchi M., Nakagawa T., Nakashima T., Kawai T. // Ibid. 2011. V. 21. P. 17425. https://doi.org/10.1039/c1jm12993g
- Kashihara R., Morimoto M., Ito S., Miyasaka H., Irie M. // J. Am. Chem. Soc. 2017. V. 139. P. 16498. https://doi.org/10.1021/jacs.7b10697
- Takagi Y., Morimoto M., Kashihara R. et al. // Tetrahedron. 2017. V. 73. P. 4918. https://doi.org/10.1016/j.tet.2017.03.040
- Nevskyi O., Sysoiev D., Oppermann A., Huhn T., Woll D. // Angew. Chem. Int. Ed. 2016. V. 55. P. 12698. https://doi.org/10.1002/anie.201606791
- Roubinet B., Bossi M.L., Alt P. et al. // Ibid. P. 15429. https://doi.org/10.1002/anie.201607940
- Uno K., Bossi M.L., Belov V.N., Irie M., Hell S.W. // Chem. Commun. 2020. V. 56. P. 2198. https://doi.org/10.1039/c9cc09390g
- Nakagawa T., Miyasaka Y., Yokoyama Y. // Ibid. 2018. V. 54. P. 3207. https://doi.org/10.1039/c8cc00566d
- Andresen M., Wahl M.C., Stiel A.C. et al. // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 13070. https://doi.org/10.1073/pnas.0502772102
- Grotjohann T., Testa I., Reuss M. et al. // eLife. 2012. V. 1. e00248. https://doi.org/10.7554/eLife.00248
- Grotjohann T., Testa I., Leutenegger M. et al. // Nature. 2011. V. 478. P. 204. https://doi.org/10.1038/nature10497
- Liu G., Leng J., Zhou Q. et al. // Dyes Pigm. 2022. V. 203. P. 110361. https://doi.org/10.1016/j.dyepig.2022.110361
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // Russ. Nanotechnol. 2012. V. 7. No. 5–6. P. 89. https://doi.org/10.1134/S1995078012030032
- de Silva A.P., Uchiyama S. // Nat. Nanotechnol. 2007. V. 2. P. 399. https://doi.org/10.1038/nnano.2007.188
- Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481. https://doi.org/10.1021/cr068403q
- Budyka M.F., Potashova N.I., Gavrishova T.N., Li V.M. // High Energy Chem. 2012. V. 46. P. 369. https://doi.org/10.1134/S0018143912040054
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218. https://doi.org/10.1002/slct.202004721
- Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta, Part A. 2022. V. 267. P. 120565. https://doi.org/10.1016/j.saa.2021.120565
- Budyka M.F., Fedulova J.A., Gavrishova T.N. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137. https://doi.org/10.1039/d2cp02865d
- Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectrochim. Acta, Part A. 2024. V. 320. P. 124666. https://doi.org/10.1016/j.saa.2024.124666
- Budyka M.F., Li V.M., Gavrishova T.N. // High Energy Chem. 2025. V. 59. P. 22. https://doi.org/10.1134/S0018143924701431
- Budyka M.F. // High Energy Chem. 2007. V. 41. P. 213. https://doi.org/10.1134/S0018143907030058
- Lord S.J., Conley N.R., Lee H.D. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 9204. https://doi.org/10.1021/ja802883k
- Homan R.A., Lapek J.D., Woo C.M. et al. // Nat. Rev. Methods Primers. 2024. V. 4. P. 30. https://doi.org/10.1038/s43586-024-00308-4
- Lord S.J., Lee H.D., Samuel R. et al. // J. Phys. Chem. B. 2010. V. 114. P. 14157. https://doi.org/10.1021/jp907080r
- Belov V.N., Wurm C.A., Boyarskiy V.P., Jakobs S., Hell S.W. // Angew. Chem. Int. Ed. 2010. V. 49. P. 3520. https://doi.org/10.1002/anie.201000150
- Hauke S., von Appen A., Quidwai T., Ries J., Wombacher R. // Chem. Sci. 2017. V. 8. P. 559. https://doi.org/10.1039/c6sc02088g
- Maurel D., Banala S., Laroche T., Johnsson K. // ACS Chem. Biol. 2010. V. 5. P. 507. https://doi.org/10.1021/cb1000229
- Gong Q., Zhang X., Li W. et al. // J. Am. Chem. Soc. 2022. V. 144. P. 21992. https://doi.org/10.1021/jacs.2c08947
- Lincoln R., Bossi M.L., Remmel M. et al. // Nat. Chem. 2022. V. 14. P. 1013. https://doi.org/10.1038/s41557-022-00995-0
- Vaughan J.C., Jia S., Zhuang X.W. // Nat. Methods. 2012. V. 9. P. 1181. https://doi.org/10.1038/nmeth.2214
- Go G., Jeong U., Park H., Go S., Kim D. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202405246. https://doi.org/10.1002/anie.202405246
- Efros A.L., Nesbitt D.J. // Nat. Nanotechn. 2016. V. 11. P. 661. https://doi.org/10.1038/nnano.2016.140
- Shi J., Sun W., Utzat H. et al. // Ibid. 2021. V. 16. P. 1355. https://doi.org/10.1038/s41565-021-01016-w
- Du J., Yang Z., Lin H., Poelman D. // Respons. Mater. 2024. V. 2. P. e20240004. https://doi.org/10.1002/rpm.20240004
- Knibbe H., Rehm D., Weller A. // Ber. Bunsen-Ges. Phys. Chem. 1969. V. 73. P. 839. https://doi.org/10.1002/bbpc.19690730819
- Fukaminato T., Tanaka M., Doi T. et al. // Photochem. Photobiol. Sci. 2010. V. 9. P. 181. https://doi.org/10.1039/b9pp00131j
- Braslavsky S.E., Fron E., Rodriguez H.B. et al. // Ibid. 2008. V. 7. P. 1444. https://doi.org/10.1039/b810620g
- Irie M., Fukaminato T., Sasaki T., Tamai N., Kawai T. // Nature. 2002. V. 420. P. 759. https://doi.org/10.1038/420759a
- Fukaminato T., Sasaki T., Kawai T., Tamai N., Irie M. // J. Am. Chem. Soc. 2004. V. 126. P. 14843. https://doi.org/10.1021/ja047169n
- Galimov D.I., Tuktarov A.R., Sabirov D.Sh., Khuzin A.A., Dzhemilev U.M. // J. Photochem. Photobiol. A. 2019. V. 375. P. 64. https://doi.org/10.1016/j.jphotochem.2019.02.017
- Jeong J., Yun E., Choi Y. et al. // Chem. Commun. 2011. V. 47. P. 10668. https://doi.org/10.1039/c1cc14041h
- Budyka M.F. // Org. Photonics Photovolt. 2015. V. 3. P. 101. https://doi.org/10.1515/oph-2015-0001
- Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173. https://doi.org/10.1021/ar200214k
- Ordronneau L., Aubert V., Metivier R. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 2599. https://doi.org/10.1039/c2cp23333a
- Ordronneau L., Boixel J., Aubert V. et al. // Org. Biomol. Chem. 2014. V. 12. P. 979. https://doi.org/10.1039/c3ob42119h
- Budyka M.F., Li V.M. // ChemPhysChem. 2017. V. 18. P. 260. https://doi.org/10.1002/cphc.201600722
- Budyka M.F., Lee V.M., Gavrishova T.N. // J. Photochem. Photobiol. A. 2014. V. 279. P. 59. https://doi.org/10.1016/j.jphotochem.2014.01.004
- Balzani V., Cola L., Prodi L., Scandola F. // Pure Appl. Chem. 1990. V. 62. P. 1457. https://doi.org/10.1351/pac199062081457
- Zhu F., Hou X.-F., Wang J. et al. // Asian J. Org. Chem. 2024. P. e202400385. https://doi.org/10.1002/ajoc.202400385
- Andréasson J., Straight S.D., Kodis G. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 16259. https://doi.org/10.1021/ja0654579
- Andreasson J., Pischel U., Straight S.D. et al. // Ibid. 2011. V. 133. P. 11641. https://doi.org/10.1021/ja203456h
- Andreasson J., Straight S.D., Bandyopadhyay S. et al. // Angew. Chem. Int. Ed. 2007. V. 46. P. 958. https://doi.org/10.1002/anie.200603856
- Andreasson J., Straight S.D., Moore T.A., Moore A.L., Gust D. // Chem. Eur. J. 2009. V. 15. P. 3936. https://doi.org/10.1002/chem.200900043
- Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855. https://doi.org/10.1039/C5RA06628J
- Doddi S., Narayanaswamy K., Ramakrishna B., Singh S.P., Bangal P.R. // J. Fluoresc. 2016. V. 26. P. 1939. https://doi.org/10.1007/s10895-016-1886-0
- Yan Q., Xu J., Luo M. et al. // Dyes Pigm. 2023. V. 214. P. 111231. https://doi.org/10.1016/j.dyepig.2023.111231
- Hu Z., Zhang Q., Xue M., Sheng Q., Liu Y. // Opt. Mater. 2008. V. 30. P. 851. https://doi.org/10.1016/j.optmat.2007.03.012
- Yao Z., Wang X., Liu J. et al. // Chem. Commun. 2023. V. 59. P. 2469. https://doi.org/10.1039/d2cc06707b
- Naren G., Hsu C.W., Li S. et al. // Nat. Commun. 2019. V. 10. P. 3996. https://doi.org/10.1038/s41467-019-11885-4
- Yildiz I., Deniz E., Raymo F. // Chem. Soc. Rev. 2009. V. 38. P. 1859. https://doi.org/10.1039/b804151m
- Credi A. // New J. Chem. 2012. V. 36. P. 1925. https://doi.org/10.1039/c2nj40335h
- Chashchikhin O.V., Budyka M.F. // High Energy Chem. 2017. V. 51. P. 449. https://doi.org/10.1134/S0018143918010022
- Zhao J.-L., Li M.-H., Cheng Y.-M. et al. // Coord. Chem. Rev. 2023. V. 475. P. 214918. https://doi.org/10.1016/j.ccr.2022.214918
- Budyka M.F., Chashchikhin O.V., Nikulin P.A. // Russ. Nanotechnol. 2016. V. 11. N. 1–2. P. 67. https://doi.org/10.1134/S199507801601002X
- Chashchikhin O.V., Budyka M.F., Gavrishova T.N., Li V.M. // RSC Adv. 2017. V. 7. P. 2236. https://doi.org/10.1039/C6RA27577J
- Liu M., Tang G., Liu Y., Jiang F. // J. Phys. Chem. Lett. 2024. V. 15. P. 1975. https://doi.org/10.1021/acs.jpclett.3c03413
- Diaz S., Menendez G., Etchehon M. et al. // ACS Nano. 2011. V. 5. P. 2795. https://doi.org/10.1021/nn103243c
- Zhu L., Zhu M.-Q., Hurst J.K., Li A.D.Q. // J. Am. Chem. Soc. 2005. V. 127. P. 8968. https://doi.org/10.1021/ja0423421
- Han G., Mokari T., Ajo-Franklin C., Cohen B.E. // Ibid. 2008. V. 130. P. 15811. https://doi.org/10.1021/ja804948s
- Diaz S.A., Giordano L., Jovin T.M., Jares-Erijman E.A. // Nano Lett. 2012. V. 12. P. 3537. https://doi.org/10.1021/nl301093s
- Budyka M.F., Nikulin P.A., Gavrishova T.N., Chashchikhin O.V. // ChemPhotoChem. 2021. V. 5. P. 582. https://doi.org/10.1002/cptc.202000285
- Budyka M.F., Nikulin P.A. // High Energy Chem. 2021. V. 55. P. 436. https://doi.org/10.31857/S0023119321060036
- Oneil C.E., Jackson J.M., Shim S.-H., Soper S.A. // Anal. Chem. 2016. V. 88. P. 3686. https://doi.org/10.1021/acs.analchem.5b04472
- Zhang Y., Lucas J.M., Song P. et al. // Proc. Natl. Acad. Sci. U.S.A. 2015. V. 112. P. 8959. https://doi.org/10.1073/pnas.1502005112
- Andoy N.M., Zhou X., Choudhary E. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 1845. https://doi.org/10.1021/ja309948y
- Chen X., Hou X.-F., Chen X.-M., Li Q. // Nat. Commun. 2024. V. 15. P. 5401. https://doi.org/10.1038/s41467-024-49670-7
- Wang L., Zhong W., Gao W., Liu W., Shang L. // Chem. Eng. J. 2024. V. 479. P. 147490. https://doi.org/10.1016/j.cej.2023.147490
- https://www.sciencedirect.com
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted

























