Антивозрастная медицина: митохондриально-направленные антиоксиданты и физическая нагрузка
- Авторы: Шиловский Г.А.1, Сорокина Е.В.1, Ахаев Д.Н.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 144, № 2 (2024)
- Страницы: 155-164
- Раздел: Статьи
- Статья получена: 02.02.2025
- Статья опубликована: 10.09.2024
- URL: https://rjpbr.com/0042-1324/article/view/653204
- DOI: https://doi.org/10.31857/S0042132424020035
- EDN: https://elibrary.ru/RIFAXN
- ID: 653204
Цитировать
Полный текст
Аннотация
Митохондрии – важный источник активных форм кислорода в скелетных мышцах. Митохондриальная дисфункция сопутствует развитию возрастных заболеваний человека. Повышенная продукция активных форм кислорода способствует мышечной атрофии, вызванной, например, отсутствием физической активности. Многие регулирующие пути, участвующие в биогенезе митохондрий, становятся мишенями антивозрастной терапии. Активный образ жизни и физические упражнения препятствуют возрастному повреждению митохондрий скелетных мышц. Другой способ коррекции действия активных форм кислорода – применение антиоксидантов, направленных непосредственно в митохондрии. Лечение митохондриально-направленными антиоксидантами ослабляет митохондриальную дегенерацию, улучшает возрастную функцию скелетных мышц и защищает мышцы от атрофии. Представлены данные о применении митохондриально-направленных антиоксидантов и физических упражнений для поддержания структурно-функционального состояния митохондрий и о защите мышц от саркопении.
Ключевые слова
Полный текст

Об авторах
Г. А. Шиловский
Московский государственный университет им. М.В. Ломоносова
Автор, ответственный за переписку.
Email: gregory_sh@list.ru
биологический факультет
Россия, МоскваЕ. В. Сорокина
Московский государственный университет им. М.В. Ломоносова
Email: evsorokina77@mail.ru
биологический факультет
Россия, МоскваД. Н. Ахаев
Московский государственный университет им. М.В. Ломоносова
Email: gregory_sh@list.ru
биологический факультет
Россия, МоскваСписок литературы
- Ярыгин В.Н. Руководство по геронтологии и гериатрии. В 4 тт. Т. 1. Основы геронтологии. Общая гериатрия / Ред. В.Н. Ярыгин, А.С. Мелентьев. М.: ГЭОТАР-Медиа, 2010. 720 с.
- Ahn B., Ranjit R., Premkumar P. et al. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching // J. Cachexia Sarcopenia Muscle. 2019. V. 10. P. 411–428. https://doi.org/10.1002/jcsm.12375
- Ascensão A., Lumini-Oliveira J., Oliveira P.J., Magalhães J. Mitochondria as a target for exercise-induced cardioprotection // Curr. Drug Targets. 2011. V. 12. P. 860–871. https://doi.org/10.2174/138945011795529001
- Ashar F.N., Moes A., Moore A.Z. et al. Association of mitochondrial DNA levels with frailty and all-cause mortality // J. Mol. Med. 2015. V. 93. P. 177–186. https://doi.org/10.1007/s00109-014-1233-3
- Austad S.N. The comparative biology of mitochondrial function and the rate of aging // Integr. Comp. Biol. 2018. V. 58. P. 559–566. https://doi.org/10.1093/icb/icy068
- Austin S., St-Pierre J. PGC1α and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders // J. Cell Sci. 2012. V. 125. P. 4963–4971. https://doi.org/10.1242/jcs.113662
- Averina O.A., Permyakov O.A., Emelianova M.A. et al. Kidney-related function of mitochondrial protein mitoregulin // Int. J. Mol. Sci. 2023. V. 24. P. 9106.
- Barja G., Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals // FASEB J. 2000. V. 14. P. 312–318. https://doi.org/10.1096/fasebj.14.2.312
- Booth F.W., Roberts C.K., Thyfault J.P. et al. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms // Physiol. Rev. 2017. V. 97. P. 1351–1402. https://doi.org/10.1152/physrev.00019.2016
- Chakrabarty S., Kabekkodu S.P., Singh R.P. et al. Mitochondria in health and disease // Mitochondrion. 2018. V. 43. P. 25–29. https://doi.org/10.1016/j.mito.2018.06.006
- Chen L., Qin Y., Liu B. et al. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure // Front. Cell. Dev. Biol. 2022. V. 10. P. 871357. https://doi.org/10.3389/fcell.2022.871357
- Chow L.S., Greenlund L.J., Asmann Y.W. et al. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function // J. Appl. Physiol. (1985). 2007. V. 102. P. 1078–1089. https://doi.org/10.1152/japplphysiol.00791.2006
- Coen P.M., Jubrias S.A., Distefano G. et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2013. V. 68. P. 447–455. https://doi.org/10.1093/gerona/gls196
- Conley K.E., Amara C.E., Jubrias S.A., Marcinek L.J. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo // Exp. Physiol. 2007. V. 92. P. 333–339. https://doi.org/10.1113/expphysiol.2006.034330
- Dodd S.L., Gagnon B.J., Senf S.M. et al. ROS-mediated activation of NF-кB and Foxo during muscle disuse // Muscle Nerve. 2010. V. 41. P. 110–113. https://doi.org/10.1002/mus.21526
- Druzhyna N.M., Wilson G.L., LeDoux S.P. Mitochondrial DNA repair in aging and disease // Mech. Ageing Dev. 2008. V. 129. P. 383–390. https://doi.org/10.1016/j.mad.2008.03.002
- Egawa T., Ohno Y., Goto A. et al. AMPK mediates muscle mass change but not the transition of myosin heavy chain isoforms during unloading and reloading of skeletal muscles in mice // Int. J. Mol. Sci. 2018. V. 19. P. 2954. https://doi.org/10.3390/ijms19102954
- Emery C.F., Kiecolt-Glaser J.K., Glaser R. et al. Exercise accelerates wound healing among healthy older adults: a preliminary investigation // J. Gerontol. A Biol. Sci. Med. Sci. 2005. V. 60. P. 1432–1436. https://doi.org/10.1093/gerona/60.11.1432
- Eshima H., Siripoksup P., Mahmassani Z.S. et al. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice // J. Appl. Physiol. (1985). 2020. V. 129. P. 124–132. https://doi.org/10.1152/japplphysiol.00456.2019
- Fan D., Pan K., Guo J. et al. Exercise ameliorates fine particulate matter-induced metabolic damage through the SIRT1/AMPKα/PGC1-α/NRF1 signaling pathway // Environ. Res. 2023. V. 245. P. 117973. https://doi.org/10.1016/j.envres.2023.117973
- Feng H.Z., Chen X., Malek M.H., Jin J.-P. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers // Am. J. Physiol. Cell. Physiol. 2016. V. 310. P. C27–C40. https://doi.org/10.1152/ajpcell.00173.2015
- Feniouk B.A., Skulachev V.P. Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants // Curr. Aging Sci. 2017. V. 10. P. 41–48. https://doi.org/10.2174/1874609809666160921113706
- Gouspillou G., Hepple R.T. Editorial: mitochondria in skeletal muscle health, aging and diseases // Front. Physiol. 2016. V. 7. P. 446. https://doi.org/10.3389/fphys.2016.00446
- Gries K.J., Raue U., Perkins R.K. et al. Cardiovascular and skeletal muscle health with lifelong exercise // J. Appl. Physiol. (1985). 2018. V. 125. P. 1636– 1645. https://doi.org/10.1152/japplphysiol.00174.2018
- Handschin C., Spiegelman B.M. The role of exercise and PGC1alpha in inflammation and chronic disease // Nature. 2008. V. 454. P. 463–469. https://doi.org/10.1038/nature07206
- Harman D. The biologic clock: the mitochondria? // J. Am. Geriatr. Soc. 1972. V. 20. P. 145–147.
- Hebert S.L., Marquet de Rougé P., Lanza I.R. et al. Mitochondrial aging and physical decline: insights from three generations of women // J. Gerontol. A Biol. Sci. Med. Sci. 2015. V. 70. P. 1409–1417. https://doi.org/10.1093/gerona/glv086
- Holloway G.P., Holwerda A.M., Miotto P.M. et al. Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle // Cell Rep. 2018. V. 22. P. 2837–2848. https://doi.org/10.1016/j.celrep.2018.02.069
- Hsu J.L., Hsieh Y., Tu C. et al. Catalytic properties of human manganese superoxide dismutase // J. Biol. Chem. 1996. V. 271. P. 17687–17691. https://doi.org/10.1074/jbc.271.30.17687
- Javadov S., Jang S., Rodriguez-Reyes N. et al. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats // Oncotarget. 2015. V. 6. P. 39469– 39481. https://doi.org/10.18632/oncotarget.5783
- Johnson J.M., Ferrara P.J., Verkerke A.R.P. et al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome // J. Mol. Cell. Cardiol. 2018. V. 121. P. 94–102. https://doi.org/10.1016/j.yjmcc.2018.07.001
- Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function // Genes Dev. 2004. V. 18. P. 357–368. https://doi.org/10.1101/gad.1177604
- Kondo H., Nakagaki I., Sasaki S. et al. Mechanism of oxidative stress in skeletal muscle atrophied by immobilization // Am. J. Physiol. 1993. V. 265. P. E839–E844. https://doi.org/10.1152/ajpendo.1993.265.6.E839
- Kupr B., Handschin C. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle // Front. Physiol. 2015. V. 6. P. 325. https://doi.org/10.3389/fphys.2015.00325
- Lawler J.M., Song W., Demaree S.R. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle // Free Radic. Biol. Med. 2003. V. 35. P. 9–16. https://doi.org/10.1016/S0891-5849(03)00186-2
- Lawler J.M., Kunst M., Hord J.M. et al. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014. V. 306. P. R470–R482. https://doi.org/10.1152/ajpregu.00371.2013
- Lee H.Y., Choi C.S., Birkenfeld A.L. et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance // Cell Metab. 2010. V. 12. P. 668–674. https://doi.org/10.1016/j.cmet.2010.11.004
- Lee H.Y., Lee J.S., Alves T. et al. Mitochondrial-targeted catalase protects against high-fat diet-induced muscle insulin resistance by decreasing intramuscular lipid accumulation // Diabetes. 2017. V. 66. P. 2072–2081. https://doi.org/10.2337/db16-1334
- Liu C., Li S., Liu T. et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism // Nature. 2007. V. 447. P. 477– 481. https://doi.org/10.1038/nature05767
- Lustgarten M.S., Jang Y.C., Liu Y. et al. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging // Aging Cell. 2011. V. 10 (3). P. 493–505. https://doi.org/10.1111/j.1474-9726.2011.00695.x
- Margaritelis N.V., Paschalis V., Theodorou A.A. et al. Redox basis of exercise physiology // Redox Biol. 2020. V. 35. P. 101499. https://doi.org/10.1016/j.redox.2020.101499
- Marques-Aleixo I., Oliveira P.J., Moreira P.I. et al. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms // Prog. Neurobiol. 2012. V. 99. P. 149–162. https://doi.org/10.1016/j.pneurobio.2012.08.002
- McClung J.M., Deruisseau K.C., Whidden M.A. et al. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery // Exp. Physiol. 2010. V. 95. P. 222–231. https://doi.org/10.1113/expphysiol.2009.049650
- Min K., Smuder A.J., Kwon O.S. et al. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy // J. Appl. Physiol. (1985). 2011. V. 111. P. 1459–1466. https://doi.org/10.1152/japplphysiol.00591.2011
- Morgunova G.V., Klebanov A.A. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity // Cell Biochem. Funct. 2019. V. 37. P. 169–176. https://doi.org/10.1002/cbf.3384
- Petersen K.F., Befroy D., Dufour S. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance // Science. 2003. V. 300. P. 1140–1142. https://doi.org/10.1126/science.1082889
- Petrick H.L., Holloway G.P. Revisiting mitochondrial bioenergetics: experimental considerations for biological interpretation // Function. 2020. V. 2. P. zqaa044. https://doi.org/10.1093/function/zqaa044
- Powers S.K., Smuder A.J., Judge A.R. Oxidative stress and disuse muscle atrophy: cause or consequence? // Curr. Opin. Clin. Nutr. Metab. Care. 2012. V. 15. P. 240–245. https://doi.org/10.1097/MCO.0b013e328352b4c2
- Radák Z., Naito H., Kaneko T. et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle // Pflug. Arch. 2002. V. 445. P. 273–278. https://doi.org/10.1007/s00424-002-0918-6
- Rodney G.G., Pal R., Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle // Free Radic. Biol. Med. 2016. V. 98. P. 103–112. https://doi.org/10.1016/j.freeradbiomed.2016.05.010
- Safdar A., Bourgeois J.M., Ogborn D.I. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice // PNAS USA. 2011. V. 108. P. 4135–4140. https://doi.org/10.1073/pnas.1019581108
- Shilovsky G.A., Putyatina T.S., Morgunova G.V. et al. A crosstalk between the biorhythms and gatekeepers of longevity: dual role of glycogen synthase kinase-3 // Biochemistry. 2021. V. 86. P. 433–448.
- Shilovsky G.A., Ashapkin V.V. Transcription factor Nrf2 and mitochondria – friends or foes in the regulation of aging rate // Biochemistry. 2022. V. 87. P. 1477–1486.
- Short K.R., Bigelow M.L., Kahl J. et al. Decline in skeletal muscle mitochondrial function with aging in humans // PNAS USA. 2005. V. 102. P. 5618–5623. https://doi.org/10.1073/pnas.0501559102
- Sohal R.S., Orr W.C. The redox stress hypothesis of aging // Free Radic. Biol. Med. 2012. V. 52. P. 539–555. https://doi.org/10.1016/j.freeradbiomed.2011.10.445
- Steiner J.L., Murphy E.A., McClellan J.L. et al. Exercise training increases mitochondrial biogenesis in the brain // J. Appl. Physiol. (1985). 2011. V. 111. P. 1066–1071. https://doi.org/10.1152/japplphysiol.00343.2011
- Stølen T.O., Høydal M.A., Kemi O.J. et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy // Circ. Res. 2009. V. 105. P. 527–536. https://doi.org/10.1161/CIRCRESAHA.109.199810
- Talbert E.E., Smuder A.J., Min K. et al. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant // J. Appl. Physiol. (1985). 2013. V. 115. P. 529–538. https://doi.org/10.1152/japplphysiol.00471.2013
- Trifunovic A., Larsson N.G. Mitochondrial dysfunction as a cause of ageing // J. Intern. Med. 2008. V. 263. P. 167–178. https://doi.org/10.1111/j.1365-2796.2007.01905.x
- Tryfidou D.V., McClean C., Nikolaidis M.G., Davison G.W. DNA damage following acute aerobic exercise: a systematic review and meta-analysis // Sports Med. 2020. V. 50. P. 103–127. https://doi.org/10.1007/s40279-019-01181-y
- Turrens J.F. Mitochondrial formation of reactive oxygen species // J. Physiol. 2003. V. 552. P. 335–344. https://doi.org/10.1113/jphysiol.2003.049478
- Umanskaya A., Santulli G., Xie W. et al. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging // PNAS USA. 2014. V. 111. P. 15250–15255. https://doi.org/10.1073/pnas.1412754111
- van Houten B., Hunter S.E., Meyer J.N. Mitochondrial DNA damage induced autophagy, cell death, and disease // Front. Biosci. 2016. V. 21. P. 42–54. https://doi.org/10.2741/4375
- Vyssokikh M.Y., Holtze S., Averina O.A. et al. Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program // PNAS USA. 2020. V. 117. P. 6491–6501. https://doi.org/10.1073/pnas.1916414117
- Watanabe D., Aibara C., Wada M. Treatment with EUK-134 improves sarcoplasmic reticulum Ca2+ release but not myofibrillar Ca2+ sensitivity after fatiguing contraction of rat fast-twitch muscle // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019. V. 316. P. R543–R551. https://doi.org/10.1152/ajpregu.00387.2018
- Wenz T. Mitochondria and PGC-1α in aging and ageassociated diseases // J. Aging Res. 2011. V. 2011. P. 810619. https://doi.org/10.4061/2011/810619
- Williamson J., Davison G. Targeted antioxidants in exercise-induced mitochondrial oxidative stress: emphasis on DNA damage // Antioxidants. 2020. V. 9. P. 1142. https://doi.org/10.3390/antiox9111142
- Zhang R., Wang Y., Ye K. et al. Independent impacts of aging on mitochondrial DNA quantity and quality in humans // BMC Genomics. 2017. V. 18. P. 890. https://doi.org/10.1186/s12864-017-4287-0
- Zhang X., Trevino M.B., Wang M. et al. Impaired mitochondrial energetics characterize poor early recovery of muscle mass following hind limb unloading in old mice // J. Gerontol. A Biol. Sci. Med. Sci. 2018. V. 73. P. 1313–1322. https://doi.org/10.1093/gerona/gly051
- Zorov D.B., Isaev N.K., Plotnikov E.Y. et al. The mitochondrion as janus bifrons // Biochemistry. 2007. V. 72. P. 1115–1126. https://doi.org/10.1134/s0006297907100094
Дополнительные файлы
