Anti-Aging Medicine: Mitochondrial-Directed Antioxidants and Physical Activity
- Authors: Shilovsky G.A.1, Sorokina E.V.1, Akhayev D.N.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 144, No 2 (2024)
- Pages: 155-164
- Section: Articles
- Submitted: 02.02.2025
- Published: 10.09.2024
- URL: https://rjpbr.com/0042-1324/article/view/653204
- DOI: https://doi.org/10.31857/S0042132424020035
- EDN: https://elibrary.ru/RIFAXN
- ID: 653204
Cite item
Full Text
Abstract
Mitochondria are an important source of reactive oxygen species in skeletal muscle. Mitochondrial dysfunction accompanies the development of age-related human diseases. Increased production of reactive oxygen species contributes to muscle atrophy caused, for example, by physical inactivity. Many regulatory pathways involved in mitochondrial biogenesis are targets of anti-aging therapies. Active lifestyle and exercise prevent age-related damage to skeletal muscle mitochondria. Another way to correct the action of reactive oxygen species is the use of antioxidants directly targeted to the mitochondria. Treatment with mitochondria-targeted antioxidants attenuates mitochondrial degeneration, improves age-related skeletal muscle function, and protects muscles from atrophy. This review presents data on the use of mitochondrial-directed antioxidants and exercise to maintain the structural and functional state of mitochondria, and protect muscles from sarcopenia.
Full Text

About the authors
G. A. Shilovsky
Lomonosov Moscow State University
Author for correspondence.
Email: gregory_sh@list.ru
Faculty of Biology
Russian Federation, MoscowE. V. Sorokina
Lomonosov Moscow State University
Email: evsorokina77@mail.ru
Faculty of Biology
Russian Federation, MoscowD. N. Akhayev
Lomonosov Moscow State University
Email: gregory_sh@list.ru
Faculty of Biology
Russian Federation, MoscowReferences
- Ярыгин В.Н. Руководство по геронтологии и гериатрии. В 4 тт. Т. 1. Основы геронтологии. Общая гериатрия / Ред. В.Н. Ярыгин, А.С. Мелентьев. М.: ГЭОТАР-Медиа, 2010. 720 с.
- Ahn B., Ranjit R., Premkumar P. et al. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching // J. Cachexia Sarcopenia Muscle. 2019. V. 10. P. 411–428. https://doi.org/10.1002/jcsm.12375
- Ascensão A., Lumini-Oliveira J., Oliveira P.J., Magalhães J. Mitochondria as a target for exercise-induced cardioprotection // Curr. Drug Targets. 2011. V. 12. P. 860–871. https://doi.org/10.2174/138945011795529001
- Ashar F.N., Moes A., Moore A.Z. et al. Association of mitochondrial DNA levels with frailty and all-cause mortality // J. Mol. Med. 2015. V. 93. P. 177–186. https://doi.org/10.1007/s00109-014-1233-3
- Austad S.N. The comparative biology of mitochondrial function and the rate of aging // Integr. Comp. Biol. 2018. V. 58. P. 559–566. https://doi.org/10.1093/icb/icy068
- Austin S., St-Pierre J. PGC1α and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders // J. Cell Sci. 2012. V. 125. P. 4963–4971. https://doi.org/10.1242/jcs.113662
- Averina O.A., Permyakov O.A., Emelianova M.A. et al. Kidney-related function of mitochondrial protein mitoregulin // Int. J. Mol. Sci. 2023. V. 24. P. 9106.
- Barja G., Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals // FASEB J. 2000. V. 14. P. 312–318. https://doi.org/10.1096/fasebj.14.2.312
- Booth F.W., Roberts C.K., Thyfault J.P. et al. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms // Physiol. Rev. 2017. V. 97. P. 1351–1402. https://doi.org/10.1152/physrev.00019.2016
- Chakrabarty S., Kabekkodu S.P., Singh R.P. et al. Mitochondria in health and disease // Mitochondrion. 2018. V. 43. P. 25–29. https://doi.org/10.1016/j.mito.2018.06.006
- Chen L., Qin Y., Liu B. et al. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure // Front. Cell. Dev. Biol. 2022. V. 10. P. 871357. https://doi.org/10.3389/fcell.2022.871357
- Chow L.S., Greenlund L.J., Asmann Y.W. et al. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function // J. Appl. Physiol. (1985). 2007. V. 102. P. 1078–1089. https://doi.org/10.1152/japplphysiol.00791.2006
- Coen P.M., Jubrias S.A., Distefano G. et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2013. V. 68. P. 447–455. https://doi.org/10.1093/gerona/gls196
- Conley K.E., Amara C.E., Jubrias S.A., Marcinek L.J. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo // Exp. Physiol. 2007. V. 92. P. 333–339. https://doi.org/10.1113/expphysiol.2006.034330
- Dodd S.L., Gagnon B.J., Senf S.M. et al. ROS-mediated activation of NF-кB and Foxo during muscle disuse // Muscle Nerve. 2010. V. 41. P. 110–113. https://doi.org/10.1002/mus.21526
- Druzhyna N.M., Wilson G.L., LeDoux S.P. Mitochondrial DNA repair in aging and disease // Mech. Ageing Dev. 2008. V. 129. P. 383–390. https://doi.org/10.1016/j.mad.2008.03.002
- Egawa T., Ohno Y., Goto A. et al. AMPK mediates muscle mass change but not the transition of myosin heavy chain isoforms during unloading and reloading of skeletal muscles in mice // Int. J. Mol. Sci. 2018. V. 19. P. 2954. https://doi.org/10.3390/ijms19102954
- Emery C.F., Kiecolt-Glaser J.K., Glaser R. et al. Exercise accelerates wound healing among healthy older adults: a preliminary investigation // J. Gerontol. A Biol. Sci. Med. Sci. 2005. V. 60. P. 1432–1436. https://doi.org/10.1093/gerona/60.11.1432
- Eshima H., Siripoksup P., Mahmassani Z.S. et al. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice // J. Appl. Physiol. (1985). 2020. V. 129. P. 124–132. https://doi.org/10.1152/japplphysiol.00456.2019
- Fan D., Pan K., Guo J. et al. Exercise ameliorates fine particulate matter-induced metabolic damage through the SIRT1/AMPKα/PGC1-α/NRF1 signaling pathway // Environ. Res. 2023. V. 245. P. 117973. https://doi.org/10.1016/j.envres.2023.117973
- Feng H.Z., Chen X., Malek M.H., Jin J.-P. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers // Am. J. Physiol. Cell. Physiol. 2016. V. 310. P. C27–C40. https://doi.org/10.1152/ajpcell.00173.2015
- Feniouk B.A., Skulachev V.P. Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants // Curr. Aging Sci. 2017. V. 10. P. 41–48. https://doi.org/10.2174/1874609809666160921113706
- Gouspillou G., Hepple R.T. Editorial: mitochondria in skeletal muscle health, aging and diseases // Front. Physiol. 2016. V. 7. P. 446. https://doi.org/10.3389/fphys.2016.00446
- Gries K.J., Raue U., Perkins R.K. et al. Cardiovascular and skeletal muscle health with lifelong exercise // J. Appl. Physiol. (1985). 2018. V. 125. P. 1636– 1645. https://doi.org/10.1152/japplphysiol.00174.2018
- Handschin C., Spiegelman B.M. The role of exercise and PGC1alpha in inflammation and chronic disease // Nature. 2008. V. 454. P. 463–469. https://doi.org/10.1038/nature07206
- Harman D. The biologic clock: the mitochondria? // J. Am. Geriatr. Soc. 1972. V. 20. P. 145–147.
- Hebert S.L., Marquet de Rougé P., Lanza I.R. et al. Mitochondrial aging and physical decline: insights from three generations of women // J. Gerontol. A Biol. Sci. Med. Sci. 2015. V. 70. P. 1409–1417. https://doi.org/10.1093/gerona/glv086
- Holloway G.P., Holwerda A.M., Miotto P.M. et al. Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle // Cell Rep. 2018. V. 22. P. 2837–2848. https://doi.org/10.1016/j.celrep.2018.02.069
- Hsu J.L., Hsieh Y., Tu C. et al. Catalytic properties of human manganese superoxide dismutase // J. Biol. Chem. 1996. V. 271. P. 17687–17691. https://doi.org/10.1074/jbc.271.30.17687
- Javadov S., Jang S., Rodriguez-Reyes N. et al. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats // Oncotarget. 2015. V. 6. P. 39469– 39481. https://doi.org/10.18632/oncotarget.5783
- Johnson J.M., Ferrara P.J., Verkerke A.R.P. et al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome // J. Mol. Cell. Cardiol. 2018. V. 121. P. 94–102. https://doi.org/10.1016/j.yjmcc.2018.07.001
- Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function // Genes Dev. 2004. V. 18. P. 357–368. https://doi.org/10.1101/gad.1177604
- Kondo H., Nakagaki I., Sasaki S. et al. Mechanism of oxidative stress in skeletal muscle atrophied by immobilization // Am. J. Physiol. 1993. V. 265. P. E839–E844. https://doi.org/10.1152/ajpendo.1993.265.6.E839
- Kupr B., Handschin C. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle // Front. Physiol. 2015. V. 6. P. 325. https://doi.org/10.3389/fphys.2015.00325
- Lawler J.M., Song W., Demaree S.R. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle // Free Radic. Biol. Med. 2003. V. 35. P. 9–16. https://doi.org/10.1016/S0891-5849(03)00186-2
- Lawler J.M., Kunst M., Hord J.M. et al. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014. V. 306. P. R470–R482. https://doi.org/10.1152/ajpregu.00371.2013
- Lee H.Y., Choi C.S., Birkenfeld A.L. et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance // Cell Metab. 2010. V. 12. P. 668–674. https://doi.org/10.1016/j.cmet.2010.11.004
- Lee H.Y., Lee J.S., Alves T. et al. Mitochondrial-targeted catalase protects against high-fat diet-induced muscle insulin resistance by decreasing intramuscular lipid accumulation // Diabetes. 2017. V. 66. P. 2072–2081. https://doi.org/10.2337/db16-1334
- Liu C., Li S., Liu T. et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism // Nature. 2007. V. 447. P. 477– 481. https://doi.org/10.1038/nature05767
- Lustgarten M.S., Jang Y.C., Liu Y. et al. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging // Aging Cell. 2011. V. 10 (3). P. 493–505. https://doi.org/10.1111/j.1474-9726.2011.00695.x
- Margaritelis N.V., Paschalis V., Theodorou A.A. et al. Redox basis of exercise physiology // Redox Biol. 2020. V. 35. P. 101499. https://doi.org/10.1016/j.redox.2020.101499
- Marques-Aleixo I., Oliveira P.J., Moreira P.I. et al. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms // Prog. Neurobiol. 2012. V. 99. P. 149–162. https://doi.org/10.1016/j.pneurobio.2012.08.002
- McClung J.M., Deruisseau K.C., Whidden M.A. et al. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery // Exp. Physiol. 2010. V. 95. P. 222–231. https://doi.org/10.1113/expphysiol.2009.049650
- Min K., Smuder A.J., Kwon O.S. et al. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy // J. Appl. Physiol. (1985). 2011. V. 111. P. 1459–1466. https://doi.org/10.1152/japplphysiol.00591.2011
- Morgunova G.V., Klebanov A.A. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity // Cell Biochem. Funct. 2019. V. 37. P. 169–176. https://doi.org/10.1002/cbf.3384
- Petersen K.F., Befroy D., Dufour S. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance // Science. 2003. V. 300. P. 1140–1142. https://doi.org/10.1126/science.1082889
- Petrick H.L., Holloway G.P. Revisiting mitochondrial bioenergetics: experimental considerations for biological interpretation // Function. 2020. V. 2. P. zqaa044. https://doi.org/10.1093/function/zqaa044
- Powers S.K., Smuder A.J., Judge A.R. Oxidative stress and disuse muscle atrophy: cause or consequence? // Curr. Opin. Clin. Nutr. Metab. Care. 2012. V. 15. P. 240–245. https://doi.org/10.1097/MCO.0b013e328352b4c2
- Radák Z., Naito H., Kaneko T. et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle // Pflug. Arch. 2002. V. 445. P. 273–278. https://doi.org/10.1007/s00424-002-0918-6
- Rodney G.G., Pal R., Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle // Free Radic. Biol. Med. 2016. V. 98. P. 103–112. https://doi.org/10.1016/j.freeradbiomed.2016.05.010
- Safdar A., Bourgeois J.M., Ogborn D.I. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice // PNAS USA. 2011. V. 108. P. 4135–4140. https://doi.org/10.1073/pnas.1019581108
- Shilovsky G.A., Putyatina T.S., Morgunova G.V. et al. A crosstalk between the biorhythms and gatekeepers of longevity: dual role of glycogen synthase kinase-3 // Biochemistry. 2021. V. 86. P. 433–448.
- Shilovsky G.A., Ashapkin V.V. Transcription factor Nrf2 and mitochondria – friends or foes in the regulation of aging rate // Biochemistry. 2022. V. 87. P. 1477–1486.
- Short K.R., Bigelow M.L., Kahl J. et al. Decline in skeletal muscle mitochondrial function with aging in humans // PNAS USA. 2005. V. 102. P. 5618–5623. https://doi.org/10.1073/pnas.0501559102
- Sohal R.S., Orr W.C. The redox stress hypothesis of aging // Free Radic. Biol. Med. 2012. V. 52. P. 539–555. https://doi.org/10.1016/j.freeradbiomed.2011.10.445
- Steiner J.L., Murphy E.A., McClellan J.L. et al. Exercise training increases mitochondrial biogenesis in the brain // J. Appl. Physiol. (1985). 2011. V. 111. P. 1066–1071. https://doi.org/10.1152/japplphysiol.00343.2011
- Stølen T.O., Høydal M.A., Kemi O.J. et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy // Circ. Res. 2009. V. 105. P. 527–536. https://doi.org/10.1161/CIRCRESAHA.109.199810
- Talbert E.E., Smuder A.J., Min K. et al. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant // J. Appl. Physiol. (1985). 2013. V. 115. P. 529–538. https://doi.org/10.1152/japplphysiol.00471.2013
- Trifunovic A., Larsson N.G. Mitochondrial dysfunction as a cause of ageing // J. Intern. Med. 2008. V. 263. P. 167–178. https://doi.org/10.1111/j.1365-2796.2007.01905.x
- Tryfidou D.V., McClean C., Nikolaidis M.G., Davison G.W. DNA damage following acute aerobic exercise: a systematic review and meta-analysis // Sports Med. 2020. V. 50. P. 103–127. https://doi.org/10.1007/s40279-019-01181-y
- Turrens J.F. Mitochondrial formation of reactive oxygen species // J. Physiol. 2003. V. 552. P. 335–344. https://doi.org/10.1113/jphysiol.2003.049478
- Umanskaya A., Santulli G., Xie W. et al. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging // PNAS USA. 2014. V. 111. P. 15250–15255. https://doi.org/10.1073/pnas.1412754111
- van Houten B., Hunter S.E., Meyer J.N. Mitochondrial DNA damage induced autophagy, cell death, and disease // Front. Biosci. 2016. V. 21. P. 42–54. https://doi.org/10.2741/4375
- Vyssokikh M.Y., Holtze S., Averina O.A. et al. Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program // PNAS USA. 2020. V. 117. P. 6491–6501. https://doi.org/10.1073/pnas.1916414117
- Watanabe D., Aibara C., Wada M. Treatment with EUK-134 improves sarcoplasmic reticulum Ca2+ release but not myofibrillar Ca2+ sensitivity after fatiguing contraction of rat fast-twitch muscle // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019. V. 316. P. R543–R551. https://doi.org/10.1152/ajpregu.00387.2018
- Wenz T. Mitochondria and PGC-1α in aging and ageassociated diseases // J. Aging Res. 2011. V. 2011. P. 810619. https://doi.org/10.4061/2011/810619
- Williamson J., Davison G. Targeted antioxidants in exercise-induced mitochondrial oxidative stress: emphasis on DNA damage // Antioxidants. 2020. V. 9. P. 1142. https://doi.org/10.3390/antiox9111142
- Zhang R., Wang Y., Ye K. et al. Independent impacts of aging on mitochondrial DNA quantity and quality in humans // BMC Genomics. 2017. V. 18. P. 890. https://doi.org/10.1186/s12864-017-4287-0
- Zhang X., Trevino M.B., Wang M. et al. Impaired mitochondrial energetics characterize poor early recovery of muscle mass following hind limb unloading in old mice // J. Gerontol. A Biol. Sci. Med. Sci. 2018. V. 73. P. 1313–1322. https://doi.org/10.1093/gerona/gly051
- Zorov D.B., Isaev N.K., Plotnikov E.Y. et al. The mitochondrion as janus bifrons // Biochemistry. 2007. V. 72. P. 1115–1126. https://doi.org/10.1134/s0006297907100094
Supplementary files
