Anti-Aging Medicine: Mitochondrial-Directed Antioxidants and Physical Activity

Cover Page

Cite item

Full Text

Abstract

Mitochondria are an important source of reactive oxygen species in skeletal muscle. Mitochondrial dysfunction accompanies the development of age-related human diseases. Increased production of reactive oxygen species contributes to muscle atrophy caused, for example, by physical inactivity. Many regulatory pathways involved in mitochondrial biogenesis are targets of anti-aging therapies. Active lifestyle and exercise prevent age-related damage to skeletal muscle mitochondria. Another way to correct the action of reactive oxygen species is the use of antioxidants directly targeted to the mitochondria. Treatment with mitochondria-targeted antioxidants attenuates mitochondrial degeneration, improves age-related skeletal muscle function, and protects muscles from atrophy. This review presents data on the use of mitochondrial-directed antioxidants and exercise to maintain the structural and functional state of mitochondria, and protect muscles from sarcopenia.

Full Text

Restricted Access

About the authors

G. A. Shilovsky

Lomonosov Moscow State University

Author for correspondence.
Email: gregory_sh@list.ru

Faculty of Biology

Russian Federation, Moscow

E. V. Sorokina

Lomonosov Moscow State University

Email: evsorokina77@mail.ru

Faculty of Biology

Russian Federation, Moscow

D. N. Akhayev

Lomonosov Moscow State University

Email: gregory_sh@list.ru

Faculty of Biology

Russian Federation, Moscow

References

  1. Ярыгин В.Н. Руководство по геронтологии и гериатрии. В 4 тт. Т. 1. Основы геронтологии. Общая гериатрия / Ред. В.Н. Ярыгин, А.С. Мелентьев. М.: ГЭОТАР-Медиа, 2010. 720 с.
  2. Ahn B., Ranjit R., Premkumar P. et al. Mitochondrial oxidative stress impairs contractile function but paradoxically increases muscle mass via fibre branching // J. Cachexia Sarcopenia Muscle. 2019. V. 10. P. 411–428. https://doi.org/10.1002/jcsm.12375
  3. Ascensão A., Lumini-Oliveira J., Oliveira P.J., Magalhães J. Mitochondria as a target for exercise-induced cardioprotection // Curr. Drug Targets. 2011. V. 12. P. 860–871. https://doi.org/10.2174/138945011795529001
  4. Ashar F.N., Moes A., Moore A.Z. et al. Association of mitochondrial DNA levels with frailty and all-cause mortality // J. Mol. Med. 2015. V. 93. P. 177–186. https://doi.org/10.1007/s00109-014-1233-3
  5. Austad S.N. The comparative biology of mitochondrial function and the rate of aging // Integr. Comp. Biol. 2018. V. 58. P. 559–566. https://doi.org/10.1093/icb/icy068
  6. Austin S., St-Pierre J. PGC1α and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders // J. Cell Sci. 2012. V. 125. P. 4963–4971. https://doi.org/10.1242/jcs.113662
  7. Averina O.A., Permyakov O.A., Emelianova M.A. et al. Kidney-related function of mitochondrial protein mitoregulin // Int. J. Mol. Sci. 2023. V. 24. P. 9106.
  8. Barja G., Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals // FASEB J. 2000. V. 14. P. 312–318. https://doi.org/10.1096/fasebj.14.2.312
  9. Booth F.W., Roberts C.K., Thyfault J.P. et al. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms // Physiol. Rev. 2017. V. 97. P. 1351–1402. https://doi.org/10.1152/physrev.00019.2016
  10. Chakrabarty S., Kabekkodu S.P., Singh R.P. et al. Mitochondria in health and disease // Mitochondrion. 2018. V. 43. P. 25–29. https://doi.org/10.1016/j.mito.2018.06.006
  11. Chen L., Qin Y., Liu B. et al. PGC-1α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure // Front. Cell. Dev. Biol. 2022. V. 10. P. 871357. https://doi.org/10.3389/fcell.2022.871357
  12. Chow L.S., Greenlund L.J., Asmann Y.W. et al. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function // J. Appl. Physiol. (1985). 2007. V. 102. P. 1078–1089. https://doi.org/10.1152/japplphysiol.00791.2006
  13. Coen P.M., Jubrias S.A., Distefano G. et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2013. V. 68. P. 447–455. https://doi.org/10.1093/gerona/gls196
  14. Conley K.E., Amara C.E., Jubrias S.A., Marcinek L.J. Mitochondrial function, fibre types and ageing: new insights from human muscle in vivo // Exp. Physiol. 2007. V. 92. P. 333–339. https://doi.org/10.1113/expphysiol.2006.034330
  15. Dodd S.L., Gagnon B.J., Senf S.M. et al. ROS-mediated activation of NF-кB and Foxo during muscle disuse // Muscle Nerve. 2010. V. 41. P. 110–113. https://doi.org/10.1002/mus.21526
  16. Druzhyna N.M., Wilson G.L., LeDoux S.P. Mitochondrial DNA repair in aging and disease // Mech. Ageing Dev. 2008. V. 129. P. 383–390. https://doi.org/10.1016/j.mad.2008.03.002
  17. Egawa T., Ohno Y., Goto A. et al. AMPK mediates muscle mass change but not the transition of myosin heavy chain isoforms during unloading and reloading of skeletal muscles in mice // Int. J. Mol. Sci. 2018. V. 19. P. 2954. https://doi.org/10.3390/ijms19102954
  18. Emery C.F., Kiecolt-Glaser J.K., Glaser R. et al. Exercise accelerates wound healing among healthy older adults: a preliminary investigation // J. Gerontol. A Biol. Sci. Med. Sci. 2005. V. 60. P. 1432–1436. https://doi.org/10.1093/gerona/60.11.1432
  19. Eshima H., Siripoksup P., Mahmassani Z.S. et al. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice // J. Appl. Physiol. (1985). 2020. V. 129. P. 124–132. https://doi.org/10.1152/japplphysiol.00456.2019
  20. Fan D., Pan K., Guo J. et al. Exercise ameliorates fine particulate matter-induced metabolic damage through the SIRT1/AMPKα/PGC1-α/NRF1 signaling pathway // Environ. Res. 2023. V. 245. P. 117973. https://doi.org/10.1016/j.envres.2023.117973
  21. Feng H.Z., Chen X., Malek M.H., Jin J.-P. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers // Am. J. Physiol. Cell. Physiol. 2016. V. 310. P. C27–C40. https://doi.org/10.1152/ajpcell.00173.2015
  22. Feniouk B.A., Skulachev V.P. Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants // Curr. Aging Sci. 2017. V. 10. P. 41–48. https://doi.org/10.2174/1874609809666160921113706
  23. Gouspillou G., Hepple R.T. Editorial: mitochondria in skeletal muscle health, aging and diseases // Front. Physiol. 2016. V. 7. P. 446. https://doi.org/10.3389/fphys.2016.00446
  24. Gries K.J., Raue U., Perkins R.K. et al. Cardiovascular and skeletal muscle health with lifelong exercise // J. Appl. Physiol. (1985). 2018. V. 125. P. 1636– 1645. https://doi.org/10.1152/japplphysiol.00174.2018
  25. Handschin C., Spiegelman B.M. The role of exercise and PGC1alpha in inflammation and chronic disease // Nature. 2008. V. 454. P. 463–469. https://doi.org/10.1038/nature07206
  26. Harman D. The biologic clock: the mitochondria? // J. Am. Geriatr. Soc. 1972. V. 20. P. 145–147.
  27. Hebert S.L., Marquet de Rougé P., Lanza I.R. et al. Mitochondrial aging and physical decline: insights from three generations of women // J. Gerontol. A Biol. Sci. Med. Sci. 2015. V. 70. P. 1409–1417. https://doi.org/10.1093/gerona/glv086
  28. Holloway G.P., Holwerda A.M., Miotto P.M. et al. Age-associated impairments in mitochondrial ADP sensitivity contribute to redox stress in senescent human skeletal muscle // Cell Rep. 2018. V. 22. P. 2837–2848. https://doi.org/10.1016/j.celrep.2018.02.069
  29. Hsu J.L., Hsieh Y., Tu C. et al. Catalytic properties of human manganese superoxide dismutase // J. Biol. Chem. 1996. V. 271. P. 17687–17691. https://doi.org/10.1074/jbc.271.30.17687
  30. Javadov S., Jang S., Rodriguez-Reyes N. et al. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats // Oncotarget. 2015. V. 6. P. 39469– 39481. https://doi.org/10.18632/oncotarget.5783
  31. Johnson J.M., Ferrara P.J., Verkerke A.R.P. et al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome // J. Mol. Cell. Cardiol. 2018. V. 121. P. 94–102. https://doi.org/10.1016/j.yjmcc.2018.07.001
  32. Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function // Genes Dev. 2004. V. 18. P. 357–368. https://doi.org/10.1101/gad.1177604
  33. Kondo H., Nakagaki I., Sasaki S. et al. Mechanism of oxidative stress in skeletal muscle atrophied by immobilization // Am. J. Physiol. 1993. V. 265. P. E839–E844. https://doi.org/10.1152/ajpendo.1993.265.6.E839
  34. Kupr B., Handschin C. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle // Front. Physiol. 2015. V. 6. P. 325. https://doi.org/10.3389/fphys.2015.00325
  35. Lawler J.M., Song W., Demaree S.R. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle // Free Radic. Biol. Med. 2003. V. 35. P. 9–16. https://doi.org/10.1016/S0891-5849(03)00186-2
  36. Lawler J.M., Kunst M., Hord J.M. et al. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014. V. 306. P. R470–R482. https://doi.org/10.1152/ajpregu.00371.2013
  37. Lee H.Y., Choi C.S., Birkenfeld A.L. et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance // Cell Metab. 2010. V. 12. P. 668–674. https://doi.org/10.1016/j.cmet.2010.11.004
  38. Lee H.Y., Lee J.S., Alves T. et al. Mitochondrial-targeted catalase protects against high-fat diet-induced muscle insulin resistance by decreasing intramuscular lipid accumulation // Diabetes. 2017. V. 66. P. 2072–2081. https://doi.org/10.2337/db16-1334
  39. Liu C., Li S., Liu T. et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism // Nature. 2007. V. 447. P. 477– 481. https://doi.org/10.1038/nature05767
  40. Lustgarten M.S., Jang Y.C., Liu Y. et al. MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging // Aging Cell. 2011. V. 10 (3). P. 493–505. https://doi.org/10.1111/j.1474-9726.2011.00695.x
  41. Margaritelis N.V., Paschalis V., Theodorou A.A. et al. Redox basis of exercise physiology // Redox Biol. 2020. V. 35. P. 101499. https://doi.org/10.1016/j.redox.2020.101499
  42. Marques-Aleixo I., Oliveira P.J., Moreira P.I. et al. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms // Prog. Neurobiol. 2012. V. 99. P. 149–162. https://doi.org/10.1016/j.pneurobio.2012.08.002
  43. McClung J.M., Deruisseau K.C., Whidden M.A. et al. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery // Exp. Physiol. 2010. V. 95. P. 222–231. https://doi.org/10.1113/expphysiol.2009.049650
  44. Min K., Smuder A.J., Kwon O.S. et al. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy // J. Appl. Physiol. (1985). 2011. V. 111. P. 1459–1466. https://doi.org/10.1152/japplphysiol.00591.2011
  45. Morgunova G.V., Klebanov A.A. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity // Cell Biochem. Funct. 2019. V. 37. P. 169–176. https://doi.org/10.1002/cbf.3384
  46. Petersen K.F., Befroy D., Dufour S. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance // Science. 2003. V. 300. P. 1140–1142. https://doi.org/10.1126/science.1082889
  47. Petrick H.L., Holloway G.P. Revisiting mitochondrial bioenergetics: experimental considerations for biological interpretation // Function. 2020. V. 2. P. zqaa044. https://doi.org/10.1093/function/zqaa044
  48. Powers S.K., Smuder A.J., Judge A.R. Oxidative stress and disuse muscle atrophy: cause or consequence? // Curr. Opin. Clin. Nutr. Metab. Care. 2012. V. 15. P. 240–245. https://doi.org/10.1097/MCO.0b013e328352b4c2
  49. Radák Z., Naito H., Kaneko T. et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle // Pflug. Arch. 2002. V. 445. P. 273–278. https://doi.org/10.1007/s00424-002-0918-6
  50. Rodney G.G., Pal R., Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle // Free Radic. Biol. Med. 2016. V. 98. P. 103–112. https://doi.org/10.1016/j.freeradbiomed.2016.05.010
  51. Safdar A., Bourgeois J.M., Ogborn D.I. et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice // PNAS USA. 2011. V. 108. P. 4135–4140. https://doi.org/10.1073/pnas.1019581108
  52. Shilovsky G.A., Putyatina T.S., Morgunova G.V. et al. A crosstalk between the biorhythms and gatekeepers of longevity: dual role of glycogen synthase kinase-3 // Biochemistry. 2021. V. 86. P. 433–448.
  53. Shilovsky G.A., Ashapkin V.V. Transcription factor Nrf2 and mitochondria – friends or foes in the regulation of aging rate // Biochemistry. 2022. V. 87. P. 1477–1486.
  54. Short K.R., Bigelow M.L., Kahl J. et al. Decline in skeletal muscle mitochondrial function with aging in humans // PNAS USA. 2005. V. 102. P. 5618–5623. https://doi.org/10.1073/pnas.0501559102
  55. Sohal R.S., Orr W.C. The redox stress hypothesis of aging // Free Radic. Biol. Med. 2012. V. 52. P. 539–555. https://doi.org/10.1016/j.freeradbiomed.2011.10.445
  56. Steiner J.L., Murphy E.A., McClellan J.L. et al. Exercise training increases mitochondrial biogenesis in the brain // J. Appl. Physiol. (1985). 2011. V. 111. P. 1066–1071. https://doi.org/10.1152/japplphysiol.00343.2011
  57. Stølen T.O., Høydal M.A., Kemi O.J. et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy // Circ. Res. 2009. V. 105. P. 527–536. https://doi.org/10.1161/CIRCRESAHA.109.199810
  58. Talbert E.E., Smuder A.J., Min K. et al. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant // J. Appl. Physiol. (1985). 2013. V. 115. P. 529–538. https://doi.org/10.1152/japplphysiol.00471.2013
  59. Trifunovic A., Larsson N.G. Mitochondrial dysfunction as a cause of ageing // J. Intern. Med. 2008. V. 263. P. 167–178. https://doi.org/10.1111/j.1365-2796.2007.01905.x
  60. Tryfidou D.V., McClean C., Nikolaidis M.G., Davison G.W. DNA damage following acute aerobic exercise: a systematic review and meta-analysis // Sports Med. 2020. V. 50. P. 103–127. https://doi.org/10.1007/s40279-019-01181-y
  61. Turrens J.F. Mitochondrial formation of reactive oxygen species // J. Physiol. 2003. V. 552. P. 335–344. https://doi.org/10.1113/jphysiol.2003.049478
  62. Umanskaya A., Santulli G., Xie W. et al. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging // PNAS USA. 2014. V. 111. P. 15250–15255. https://doi.org/10.1073/pnas.1412754111
  63. van Houten B., Hunter S.E., Meyer J.N. Mitochondrial DNA damage induced autophagy, cell death, and disease // Front. Biosci. 2016. V. 21. P. 42–54. https://doi.org/10.2741/4375
  64. Vyssokikh M.Y., Holtze S., Averina O.A. et al. Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program // PNAS USA. 2020. V. 117. P. 6491–6501. https://doi.org/10.1073/pnas.1916414117
  65. Watanabe D., Aibara C., Wada M. Treatment with EUK-134 improves sarcoplasmic reticulum Ca2+ release but not myofibrillar Ca2+ sensitivity after fatiguing contraction of rat fast-twitch muscle // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019. V. 316. P. R543–R551. https://doi.org/10.1152/ajpregu.00387.2018
  66. Wenz T. Mitochondria and PGC-1α in aging and ageassociated diseases // J. Aging Res. 2011. V. 2011. P. 810619. https://doi.org/10.4061/2011/810619
  67. Williamson J., Davison G. Targeted antioxidants in exercise-induced mitochondrial oxidative stress: emphasis on DNA damage // Antioxidants. 2020. V. 9. P. 1142. https://doi.org/10.3390/antiox9111142
  68. Zhang R., Wang Y., Ye K. et al. Independent impacts of aging on mitochondrial DNA quantity and quality in humans // BMC Genomics. 2017. V. 18. P. 890. https://doi.org/10.1186/s12864-017-4287-0
  69. Zhang X., Trevino M.B., Wang M. et al. Impaired mitochondrial energetics characterize poor early recovery of muscle mass following hind limb unloading in old mice // J. Gerontol. A Biol. Sci. Med. Sci. 2018. V. 73. P. 1313–1322. https://doi.org/10.1093/gerona/gly051
  70. Zorov D.B., Isaev N.K., Plotnikov E.Y. et al. The mitochondrion as janus bifrons // Biochemistry. 2007. V. 72. P. 1115–1126. https://doi.org/10.1134/s0006297907100094

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences