Dynamics of transgene expression in the MVA vaccine vector under the control of the p11, p13.5, pLEO160, p7.5 and mH5 promoters, independence of the transgene expression level from the insertion locus

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The modified vaccinia virus Ankara (MVA), characterized by high immunogenicity and proven safety, is considered a promising vector for vaccine development. An undeniable advantage of the MVA vector is its high capacity and the ability to incorporate several transgenes into different loci of the viral genome, enabling the creation of multivalent vaccines that encode multiple antigens simultaneously. This study examined the expression of a transgene encoding influenza virus protein epitopes after its integration into five loci of the MVA genome. The results demonstrated that the level of transgene expression is independent of the integration locus. Additionally, the dynamics of the expression of a reporter gene encoding Enhanced Green Fluorescent Protein (EGFP) were determined under the control of the vaccinia virus promoters p11, p13.5, pLEO160, p7.5, and mH5 upon insertion of the expression cassette into the F13L gene locus of MVA. The highest expression level, though with a delayed onset of protein synthesis, was achieved with the late promoter p11. Using the p13.5 promoter resulted in earlier synthesis of EGFP in cells and higher gene expression levels compared to the promoters pLEO160, p7.5, and mH5, which provided similar levels and dynamics of reporter gene expression. These findings may be useful for developing multi-antigenic MVA-vectored vaccines.

全文:

受限制的访问

作者简介

O. Orlova

Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency

编辑信件的主要联系方式.
Email: oorlova@cspmz.ru
俄罗斯联邦, Moscow

D. Glazkova

Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency

Email: oorlova@cspmz.ru
俄罗斯联邦, Moscow

О. Sidorova

Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency

Email: oorlova@cspmz.ru
俄罗斯联邦, Moscow

F. Urusov

Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency; Izmerov Research Institute of Occupational Health

Email: oorlova@cspmz.ru
俄罗斯联邦, Moscow; Moscow

G. Shipulin

Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency

Email: oorlova@cspmz.ru
俄罗斯联邦, Moscow

Е. Bogoslovskaya

Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency

Email: oorlova@cspmz.ru
俄罗斯联邦, Moscow

参考

  1. Orlova O.V., Glazkova D.V., Bogoslovskaya E.V., Shipulin G.A., Yudin S.M. (2022) Development of modified vaccinia virus Ankara-based vaccines: advantages and applications. Vaccines. 10(9), 1516.
  2. Volz A., Sutter G. (2016) Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 97, 187–243.
  3. Rashidi A., La Rosa C., Curtsinger J., Cao Q., Zhou Q. (2022) CMV Triplex vaccine to enhance adaptive NK and T-cell reconstitution after autologous hematopoietic cell transplantation. Transplant. Cell Ther. 28(6), 343.e1–343.e4.
  4. Manuel E., Wang Z., Li Z., La Rosa C., Zhou W., Diamond D.J. (2010) Intergenic region 3 of modified vaccinia Ankara is a functional site for insert gene expression and allows for potent antigen-specific immune responses. Virology. 403(2), 155–162.
  5. Atukorale V.N., Weir J.P., Meseda C.A. (2020) Stability of the HSV-2 US-6 gene in the del II, del III, CP77, and I8R-G1L sites in modified vaccinia virus Ankara after serial passage of recombinant vectors in cells. Vaccines. 8(1), 137.
  6. Stittelaar K.J., Wyatt L.S., de Swart R.L., Vos H.W., Groen J. (2000) Protective immunity in macaques vaccinated with a modified vaccinia virus Ankara-based measles virus vaccine in the presence of passively acquired antibodies. J. Virol. 74(9), 4236–4243.
  7. Patent AU2007200016A1. (2027) Intergenic regions as novel sites for insertion of HIV DNA sequences in the genome of modified vaccinia virus Ankara. https://patents.google.com/patent/AU2007200016A1/en
  8. Weir J.P., Moss B. (1987) Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase. Virology. 158(1), 206–210.
  9. Coupar B.E., Boyle D.B., Both G.W. (1987) Effect of in vitro mutations in a vaccinia virus early promoter region monitored by herpes simplex virus thymidine kinase expression in recombinant vaccinia virus. J. Gen. Virol. 68, 2299–2309.
  10. Wittek R., Hänggi M., Hiller G. (1984) Mapping of a gene coding for a major late structural polypeptide on the vaccinia virus genome. J. Virol. 49(2), 371–378.
  11. Mackett M., Smith G.L., Moss B. (1984) General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 49(3), 857–864.
  12. Wyatt L.S., Shors S.T., Murphy B.R., Moss B. (1996) Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine. 14(15), 1451–1458.
  13. Wennier S.T., Brinkmann K., Steinhäußer C., Mayländer N., Mnich C., Wielert U., Dirmeier U., Hausmann J., Chaplin P., Steigerwald R. (2013) A novel naturally occurring tandem promoter in modified vaccinia virus Аnkara drives very early gene expression and potent immune responses. PLoS One. 8(8), e73511.
  14. Lopera-Madrid J., Medina-Magües L.G., Gladue D.P., Borca M.V., Osorio J.E. (2021) Optimization in the expression of ASFV proteins for the development of subunit vaccines using poxviruses as delivery vectors. Sci. Rep. 11(1), 23476.
  15. Di Pilato M., Mejías-Pérez E., Gómez C.E., Perdiguero B., Sorzano C.O., Esteban M. (2013) New vaccinia virus promoter as a potential candidate for future vaccines. J. Gen. Virol. 94, 2771–2776.
  16. Sancho M.C., Schleich S., Griffiths G., Krijnse-Locker J. (2002) The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. J. Virol. 76(16), 8318–8334.
  17. Gilbert S.C. (2013) Clinical development of modified vaccinia virus Ankara vaccines. Vaccine. 31(39), 4241–4246.
  18. Baur K., Brinkmann K., Schweneker M., Pätzold J., Meisinger-Henschel C., Hermann J., Steigerwald R., Chaplin P., Suter M., Hausmann J. (2010) Immediate-early expression of a recombinant antigen by modified vaccinia virus ankara breaks the immunodominance of strong vector-specific B8R antigen in acute and memory CD8 T-cell responses. J. Virol. 84(17), 8743–8752.
  19. Pilato M.D., Sánchez-Sampedro L., Mejías-Pérez E., Sorzano C., Esteban M. (2015) Modification of promoter spacer length in vaccinia virus as a strategy to control the antigen expression. J. Gen. Virol. 96(8), 2360–2371.
  20. Pérez P., Marín M.Q., Lázaro-Frías A., Sorzano C.O., Di Pilato M., Gómez C.E., Esteban M., García-Arriaza J. (2019) An MVA vector expressing HIV-1 envelope under the control of a potent vaccinia virus promoter as a promising strategy in HIV/AIDS vaccine design. Vaccines. 7(4), 208.
  21. Alharbi N.K. (2019) Poxviral promoters for improving the immunogenicity of MVA delivered vaccines. Hum. Vaccin. Immunother. 15, 203–209.
  22. Wyatt L.S., Earl P.L., Vogt J., Eller L.A., Chandran D., Liu J., Robinson H.L., Moss B. (2008) Correlation of immunogenicities and in vitro expression levels of recombinant modified vaccinia virus Ankara HIV vaccines. Vaccine. 26(4), 486–493.
  23. Mintaev R.R., Glazkova D.V., Orlova O.V., Bogoslovskaya E.V., Shipulin G.A. (2022) Development of a universal epitope-based influenza vaccine and evaluation of its effectiveness in mice. Vaccines. 10(4), 534.
  24. Antoshkina I.V., Glazkova D.V., Urusov F.A., Bogoslovskaya E.V., Shipulin G.A. (2022) Comparison of recombinant MVA selection methods based on F13L, D4R and K1L genes. Viruses. 4(3), 528.
  25. Mintaev R.R., Glazkova D.V., Orlova O.V., Ignatyev G.M., Oksanich A.S., Shipulin G.A., Bogoslovskaya E.V. (2023) Development of MVA-d34 tetravalent dengue vaccine: design and immunogenicity. Vaccines. 11(4), 831.
  26. Orlova O.V., Glazkova D.V., Mintaev R.R., Tsyganova G.M., Urusov F.A., Shipulin G.A., Bogoslovskaya E.V. (2023) Comparative evaluation of the activity of various lentiviral vectors containing three anti-HIV genes. Microorganisms. 11(4), 1053.
  27. Staib C., Drexler I., Sutter G. (2004) Construction and isolation of recombinant MVA. Meth. Mol. Biol. 269, 77–100.
  28. Kremer M., Volz A., Kreijtz J., Fux R., Lehmann M.H., Sutter G. (2012) Easy and efficient protocols for working with recombinant vaccinia virus MVA. Meth. Mol. Biol. 890, 59–92.
  29. Sánchez-Puig J., Blasco R. (2005) Isolation of vaccinia MVA recombinants using the viral F13L gene as the selective marker. Biotechniques. 39(5), 665–666.
  30. Ricci P.S., Schäfer B., Kreil T.R., Falkner F.G., Holzer G.W. (2011) Selection of recombinant MVA by rescue of the essential D4R gene. J. Virol. 12(8), 529.
  31. Scheiflinger F., Falkner F.G., Dorner F. (1996) Evaluation of the thymidine kinase (tk) locus as an insertion site in the highly attenuated vaccinia MVA strain. Arch. Virol. 141(3–4), 663–669.
  32. Hessel A., Savidis-Dacho H., Coulibaly S., Portsmouth D., Kreil T.R., Crowe B.A., Schwendinger M.G., Pilz A., Barrett P.N., Falkner F.G., Schäfer B. (2014) MVA vectors expressing conserved influenza proteins protect mice against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLoS One. 9(2), e88340.
  33. Sabbaghi A., Ghaemi A. (2021) Molecular adjuvants for DNA vaccines: application, design, preparation, and formulation. Meth. Mol. Biol. 2197, 87–112.
  34. Morelli M.P., Zajac M.P., Pellegrini J.M., Amiano N.O., Tateosian N.L., Calamante G., Gherardi M.M., García V.E. (2020) IL-12 DNA displays efficient adjuvant effects improving immunogenicity of Ag85A in DNA Prime/MVA boost immunizations. Front. Cell. Infect. Microbiol. 10, 581812.
  35. Kreiter S., Diken M., Selmi A., Petschenka J., Türeci O., Sahin U. (2016) FLT3 ligand as a molecular adjuvant for naked RNA vaccines. Meth. Mol. Biol. 1428, 163–175.
  36. Orubu T., Alharbi N.K., Lambe T., Gilbert S.C., Cottingham M.G. (2012) Expression and cellular immunogenicity of a transgenic antigen driven by endogenous poxviral early promoters at their authentic loci in MVA. PLoS One. 7, e40167.
  37. Davison A.J., Moss B. (1989) Structure of vaccinia virus early promoters. J. Mol. Biol. 210, 749–769.
  38. Staib C., Drexler I., Ohlmann M., Wintersperger S., Erfle V., Sutter G. (2000) Transient host range selection for genetic engineering of modified vaccinia virus Ankara. BioTechniques. 28, 1137–1148.
  39. Hall Y.H.J. (2016) Promoter and leader sequence effects on immunological potency of recombinant modified vaccinia virus Ankara delivering tuberculosis antigens. PhD thesis. The Open University. https://oro.open.ac.uk/61260/1/13834601.pdf
  40. Müller K. (2018) Сharacterization of vaccinia virus MVA candidate vaccines mutated in viral genes modulating inflammasome activation. Ludwig Maximilian Univ. Munich. Munich. https://edoc.ub.uni-muenchen.de/22017/
  41. Dai L. (2014) Generation, characterization and application of a novel BAC system for MVA mutagenesis to investigate the function of vaccinia virus immune modulatory gene N1L. Technical Univ. Munich. Munich. https://mediatum.ub.tum.de/doc/1191773/1191773.pdf

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. a – Scheme of the arrangement of loci 007/008, F13L, TK, D4R, 136/137 in the MVA genome. GOI – analyzed gene. b – Scheme of the shuttle vector for the F13L selection system. Left arm – left arm of homology with the F13L locus. Promoter – location of one of the five promoters (p7.5; mH5; p13.5; p11; pLEO160). EGFP – sequence encoding the EGFP protein. Transcription termination site. Right arm – right arm of homology with the F13L locus; BamHI, NheI and EcoRI restriction sites are shown. c – Scheme of insertion of shuttle vectors into the F13L locus of the rMVAΔF13L vector.

下载 (223KB)
3. Fig. 2. Gating strategy to detect EGFP-positive cells among HEK293FT cells transduced with rMVA-p7.5-EGFP.

下载 (526KB)
4. Fig. 3. Western blot analysis of k2 polypeptide synthesis in HEK293FT cells infected with rMVA-F13L-k2, rMVA-D4R-k2, rMVA-007/008-k2, rMVA-136/137-k2, rMVA-tk-k2 or wild-type (WT) MVA. WT was used as a negative control for rMVA-infected cells. The mass of k2 polypeptide is 31 kDa.

下载 (89KB)
5. Fig. 4. a – Dynamics of EGFP synthesis under the control of different promoters. Content (%) of EGFP+ cells in dynamics. b–c – Fluorescence intensity in infected cells in the EGFP+ population (b) and in the entire cell population (c), normalized to the MFI of cells at the time of infection with each rMVA. Shown are the mean values ​​and standard deviations calculated from the results of three experiments.

下载 (691KB)
6. Fig. 5. Alignment of p7.5 and mH5 promoters. Vaccinia – fragment of the vaccinia virus genomic sequence (GeneBank accession number NC_006998). Dai L., 2014 and Wyatt L.S., 1996 – promoter sequences used in the corresponding publications.

下载 (532KB)

版权所有 © Russian Academy of Sciences, 2025