Desulfosporosinus shakirovi sp. nov., a sulfate-reducing bacterium with ability to petroleum hydrocarbons degradation
- Autores: Eskova A.I.1, Ryzhmanova Y.V.2, Trubitsyn V.E.2, Polonik N.S.1, Ponomareva A.L.1, Shcherbakova V.A.2
-
Afiliações:
- V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
- FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”
- Edição: Volume 94, Nº 3 (2025)
- Páginas: 264-274
- Seção: EXPERIMENTAL ARTICLES
- URL: https://rjpbr.com/0026-3656/article/view/683489
- DOI: https://doi.org/10.31857/S0026365625030044
- ID: 683489
Citar
Resumo
A new sulfate-reducing strain SRJS8T with a high capacity to biodegradate petroleum hydrocarbons has been isolated from the bottom sediments of the northern part of the Sea of Japan. The cells were gram-positive, single-spore-forming motile rods 0.4–0.5 × 2.0–5.0 µm in size. Strain SRJS8T grew at the temperature range from 6°C to 30°C (optimum at 25°C), pH 6.3–7.7 (optimum 7.3), and NaCl concentrations ranging from 0 to 20g/L (optimum 2 g/L). Strain SRJS8T used butanol, glycerol, methanol, ethanol, butyrate, lactate, pyruvate, formate, yeast extract, H2/CO2, crude oil as electron donors and carbon source in the presence of sulfate. SRJS8T used sulfate, sulfite, thiosulphate, elemental sulphur, fumarate and Fe(III) as electron acceptors with lactate presence. The closest relative of the SRJS8T was Desulfosporosinus lacus STP12T with 98.49% similarity. The complete genome of strain SRJS8T (5.43 Mb) was sequenced. DNA–DNA homology of the SRJS8T and D. lacus was 57.4%, and the ANI value was 93.69%. The genomic DNA G + C content was 42.08%. In accordance to the obtained data, SRJS8T is a novel species within the Desulfosporosinus genus, for which the name Desulfosporosinus shakirovi sp. noV. is proposed. The type strain is SRJS8T (= VKM B-3489T, = JCM 39189T).
Texto integral

Sobre autores
A. Eskova
V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
Autor responsável pela correspondência
Email: alena-esya@mail.ru
Rússia, Vladivostok, 690041
Ya. Ryzhmanova
FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”
Email: alena-esya@mail.ru
Institute of the Biochemistry and Physiology of Microorganisms
Rússia, Pushchino, Moscow region, 142290V. Trubitsyn
FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”
Email: alena-esya@mail.ru
Institute of the Biochemistry and Physiology of Microorganisms
Rússia, Pushchino, Moscow region, 142290N. Polonik
V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
Email: alena-esya@mail.ru
Rússia, Vladivostok, 690041
A. Ponomareva
V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
Email: alena-esya@mail.ru
Rússia, Vladivostok, 690041
V. Shcherbakova
FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”
Email: alena-esya@mail.ru
Institute of the Biochemistry and Physiology of Microorganisms
Rússia, Pushchino, Moscow region, 142290Bibliografia
- Валитов М. Г., Шакиров Р. Б., Ли Н. С., Яцук А. В., Прошкина З. Н., Аксентов К. И., Максеев Д. С., Швалов Д. А., Пономарева А. Л., Бовсун М. А., Сьедин В. Т., Легкодимов А. А., Саломатин А. С. Комплексные геолого-геофизические исследования северной части Японского моря (2017–2019 гг.) // Технические проблемы освоения Мирового океана. 2019. № 8. С. 257–261.
- Abu Laban N., Tan B., Dao A., Fogh J. Draft genome sequence of uncultivated Desulfosporosinus sp. strain Tol-M, obtained by stable isotope probing using [] toluene // Genome Announc. 2015. V. 3. Art. e01422-14. https://doi.org/10.1128%2FgenomeA.01422-14
- Aeckersberg F., Bak F., Widdel F. Anaerobic oxidation of saturated hydrocarbons to by a new type of sulfate-reducing bacterium // Arch. Microbiol. 1991. V. 156. P. 5–14.
- Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan sea // Int. J. Syst. Bacteriol. 1997. V. 47. P. 515–521. https://doi.org/10.1099/00207713-47-2-515
- Barnes S. P., Bradbrook S. D., Cragg B. A., Marchesi J. R., Weightman A. J., Fry J. C., Parkes R. J. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean // Geomicrobiol. J. 1998. V. 15. P. 67–83.
- Bastin E. S., Greer F. E., Merritt C. A., Moulton G. The presence of sulphate reducing bacteria in oil field waters // Science. 1926. V. 63. P. 21–24.
- Bian X.-Yu., Mbadinga S. M., Liu Y.-F., Ye R. Q., Gu J.-D., Mu B.-Zh. Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites // Sci. Rep. 2015. V. 5. P. 1–12. https://doi.org/10.1038%2Fsrep09801
- Chen S. C., Musat N., Lechtenfeld O. J., Paschke H., Schmidt M., Said N., Popp D., Calabrese F., Stryhanyuk H., Jaekel U., Zhu Y. G. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep // Nature. 2019. V. 568. P. 108–111. https://doi.org/10.1038/s41586-019-1063-0
- Cline J. D. Spectrophotometric determination of hydrogen sulfide in natural waters // Limnol. Oceanogr. 1969. V. 14. P. 454–458. https://doi.org/10.4319/lo.1969.14.3.0454
- Cochrane W. J., Jones P. S., Sanders P. F., Holt D. M., Mosley M. J. Studies on the thermophilic sulfate-reducing bacteria from a souring North Sea oil field / Proceedings of the Society of Petroleum Engineers, European Petroleum Conference, London, UK. 1988. P. 301–316. https://doi.org/10.2118/18368-MS
- Collins M. D. Analysis of isoprenoid quinones // Methods Microbiol. / Ed. G. Gottschalk. New York: Academic Press, 1985. V. 18. P. 329–366.
- Cravo-Laureau C., Matheron R., Cayol J. L., Joulian C., Hirschler-Réa A. Desulfatibacillum aliphaticivorans gen. nov., sp nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 77–83. https://doi.org/10.1099/ijs.0.02717-0
- Cravo-Laureau C., Labat C., Joulian C., Matheron R., Hirschler-Réa A. Desulfatiferula olefinivorans gen. nov., sp. nov., a long-chain n-alkene-degrading, sulfate-reducing bacterium // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 2699–2702. https://doi.org/10.1099/ijs.0.65240-0
- Davidova I. A., Duncan K. E., Choi O. K., Suflita J. M. Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 2737–2742. https://doi.org/10.1099/ijs.0.64398-0
- Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K. H., Horikoshi K. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk // Appl. Environ. Microbiol. 2003. V. 69. P. 7224–7235. https://doi.org/10.1128%2FAEM.69.12.7224-7235.2003
- Hahn C. J., Laso-Pérez R., Vulcano F., Vaziourakis K. M., Stokke R., Steen I. H., Teske A., Boetius A., Liebeke M., Amann R., Knittel K. “Candidatus Ethanoperedens,” a thermophilic genus of archaea mediating the anaerobic oxidation of ethane // MBio. 2020. V. 11. Art. e00600-20. https://doi.org/10.1128/mbio.00600-20
- Heider J., Szaleniec M., Martins B. M., Seyhan D., Buckel W., Golding B. T. Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes // J. Mol. Microbiol. Biotechnol. 2016. V. 26. P. 29–44. https://doi.org/10.1159/000441656
- Jørgensen B. B., Findlay A. J., Pellerin A. The biogeochemical sulfur cycle of marine sediments // Front. Microbiol. 2019. V. 10. Art. 849. https://doi: 10.3389/fmicb.2019.00849
- Kniemeyer O., Musat F., Sievert S. M., Knittel K., Wilkes H., Blumenberg M., Michaelis M., Classen A., Bolm C., Joye S.-B., Widdel F. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria // Nature. 2007. V. 449. P. 898–901. https://doi.org/10.1038/nature06200
- Laso-Perez R., Wegener G., Knittel K., Widdel F., Harding K. J., Krukenberg V., Meier D. V., Richter M., Tegetmeyer H. E., Riedel D., Richnow H. H., Adrian L., Reemtsma T., Lechtenfeld O. J., Musat F. Thermophilic archaea activate butane via alkyl-coenzyme M formation // Nature. 2016. V. 539. P. 396–401. https://doi.org/10.1038/nature20152
- Leu J. Y., McGovern-Traa C.P., Porter A. J., Hamilton W. A. The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea // Lett. Appl. Microbiol. 1999. V. 29. P. 246–252. https://doi.org/10.1046/j.1365-2672.1999.00628.x
- Lovley D. R., Phillips E. J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments // Appl. Environ. Microbiol. 1986. V. 51. P. 683–689. https://doi.org/10.1128%2Faem.51.4.683-689.1986
- Murray R., Doetsch R., Robinow C. Methods for general and molecular bacteriology // Eds. Gerhardt P., Murray R. G.E., Wood W. A., Kreig N. R. Washington DC: American Society for Microbiology, 1994. P. 791.
- Pilloni G., von Netzer F., Engel M., Lueders T. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP // FEMS Microbiol. Ecol. 2011. V. 78. P. 165–175. https://doi.org/10.1111/j.1574-6941.2011.01083.x
- Ramamoorthy S., Sass H., Langner H., Schumann P., Kroppenstedt R. M., Spring S., Overmann J., Rosenzweig R. F. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 2729–2736. https://doi.org/10.1099/ijs.0.63610-0
- Revsbech N. P., Jørgensen B. B., Blackburn T. H. Oxygen in the sea bottom measured with a microelectrode // Science. V. 207. P. 1355–1356. https://doi.org/10.1126/science.207.4437.1355
- Richter M., Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 19126–19131. https://doi.org/10.1073/pnas.0906412106
- Shakirov R. B., Valitov M. G., Obzhirov A. I., Mishukov V. F., Yatsuk A. V., Syrbu N. S., Mishukova O. V. Methane anomalies, its flux on the sea-atmosphere interface and their relations to the geological structure of the South-Tatar sedimentary basin (Tatar Strait, the Sea of Japan) // Mar. Geophys. Res. 2019. V. 40. P. 581–600. https://doi.org/10.1007/s11001-019-09389-3
- Shou L. B., Liu Y. F., Zhou J., Liu Z. L., Zhou L., Liu J. F., Yang S. Z., Gu J. D., Mu B. Z. New evidence for a hydroxylation pathway for anaerobic alkane degradation supported by analyses of functional genes and signature metabolites in oil reservoirs // AMB Express. 2021. V. 11. P. 1–10. https://doi.org/10.1186/s13568-020-01174-5
- Spring S., Rosenzweig F. The genera Desulfitobacterium and Desulfosporosinus: taxonomy // The Prokaryotes. 2006. V. 4. P. 771–786. http://dx.doi.org/10.1007/0-387-30744-3_24
- Sun W., Sun X., Cupples A. M. Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium // Int. Biodeterior. Biodegr. 2014. V. 88. P. 13–19. https://doi.org/10.1016/j.ibiod.2013.11.014
- Vandieken V., Niemann H., Engelen B., Cypionka H. Marinisporobacter balticus gen. nov., sp. nov., Desulfosporosinus nitroreducens sp. noV. and Desulfosporosinus fructosivorans sp. nov., new spore-forming bacteria isolated from subsurface sediments of the Baltic Sea // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 1887–1893. https://doi.org/10.1099/ijsem.0.001883
- Zeng Y., Zou Y., Chen B., Grebmeier J. M., Li H., Yo Yu, Zheng T. Phylogenetic diversity of sediment bacteria in the northern Bering // Polar Biol. 2011. V. 34. P. 907–919. http://dx.doi.org/10.1007/s00300-010-0947-0
- Zeng Y.-X., Yu Y., Li H.-R., Luo W. Prokaryotic community composition in Arctic Kongsfjorden and Sub-Arctic northern Bering Sea sediments as revealed by 454 pyrosequencing // Front. Microbiol. 2017. V. 8. Art. 2498. https://doi.org/10.3389%2Ffmicb.2017.02498
Arquivos suplementares
