Desulfosporosinus shakirovi sp. nov., a sulfate-reducing bacterium with ability to petroleum hydrocarbons degradation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new sulfate-reducing strain SRJS8T with a high capacity to biodegradate petroleum hydrocarbons has been isolated from the bottom sediments of the northern part of the Sea of Japan. The cells were gram-positive, single-spore-forming motile rods 0.4–0.5 × 2.0–5.0 µm in size. Strain SRJS8T grew at the temperature range from 6°C to 30°C (optimum at 25°C), pH 6.3–7.7 (optimum 7.3), and NaCl concentrations ranging from 0 to 20g/L (optimum 2 g/L). Strain SRJS8T used butanol, glycerol, methanol, ethanol, butyrate, lactate, pyruvate, formate, yeast extract, H2/CO2, crude oil as electron donors and carbon source in the presence of sulfate. SRJS8T used sulfate, sulfite, thiosulphate, elemental sulphur, fumarate and Fe(III) as electron acceptors with lactate presence. The closest relative of the SRJS8T was Desulfosporosinus lacus STP12T with 98.49% similarity. The complete genome of strain SRJS8T (5.43 Mb) was sequenced. DNA–DNA homology of the SRJS8T and D. lacus was 57.4%, and the ANI value was 93.69%. The genomic DNA G + C content was 42.08%. In accordance to the obtained data, SRJS8T is a novel species within the Desulfosporosinus genus, for which the name Desulfosporosinus shakirovi sp. noV. is proposed. The type strain is SRJS8T (= VKM B-3489T, = JCM 39189T).

全文:

受限制的访问

作者简介

A. Eskova

V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alena-esya@mail.ru
俄罗斯联邦, Vladivostok, 690041

Ya. Ryzhmanova

FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”

Email: alena-esya@mail.ru

Institute of the Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, Moscow region, 142290

V. Trubitsyn

FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”

Email: alena-esya@mail.ru

Institute of the Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, Moscow region, 142290

N. Polonik

V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences

Email: alena-esya@mail.ru
俄罗斯联邦, Vladivostok, 690041

A. Ponomareva

V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences

Email: alena-esya@mail.ru
俄罗斯联邦, Vladivostok, 690041

V. Shcherbakova

FRC “Pushchino scientific center of biological research of Russian Academy of Sciences”

Email: alena-esya@mail.ru

Institute of the Biochemistry and Physiology of Microorganisms

俄罗斯联邦, Pushchino, Moscow region, 142290

参考

  1. Валитов М. Г., Шакиров Р. Б., Ли Н. С., Яцук А. В., Прошкина З. Н., Аксентов К. И., Максеев Д. С., Швалов Д. А., Пономарева А. Л., Бовсун М. А., Сьедин В. Т., Легкодимов А. А., Саломатин А. С. Комплексные геолого-геофизические исследования северной части Японского моря (2017–2019 гг.) // Технические проблемы освоения Мирового океана. 2019. № 8. С. 257–261.
  2. Abu Laban N., Tan B., Dao A., Fogh J. Draft genome sequence of uncultivated Desulfosporosinus sp. strain Tol-M, obtained by stable isotope probing using [C613] toluene // Genome Announc. 2015. V. 3. Art. e01422-14. https://doi.org/10.1128%2FgenomeA.01422-14
  3. Aeckersberg F., Bak F., Widdel F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium // Arch. Microbiol. 1991. V. 156. P. 5–14.
  4. Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan sea // Int. J. Syst. Bacteriol. 1997. V. 47. P. 515–521. https://doi.org/10.1099/00207713-47-2-515
  5. Barnes S. P., Bradbrook S. D., Cragg B. A., Marchesi J. R., Weightman A. J., Fry J. C., Parkes R. J. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean // Geomicrobiol. J. 1998. V. 15. P. 67–83.
  6. Bastin E. S., Greer F. E., Merritt C. A., Moulton G. The presence of sulphate reducing bacteria in oil field waters // Science. 1926. V. 63. P. 21–24.
  7. Bian X.-Yu., Mbadinga S. M., Liu Y.-F., Ye R. Q., Gu J.-D., Mu B.-Zh. Insights into the anaerobic biodegradation pathway of n-alkanes in oil reservoirs by detection of signature metabolites // Sci. Rep. 2015. V. 5. P. 1–12. https://doi.org/10.1038%2Fsrep09801
  8. Chen S. C., Musat N., Lechtenfeld O. J., Paschke H., Schmidt M., Said N., Popp D., Calabrese F., Stryhanyuk H., Jaekel U., Zhu Y. G. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep // Nature. 2019. V. 568. P. 108–111. https://doi.org/10.1038/s41586-019-1063-0
  9. Cline J. D. Spectrophotometric determination of hydrogen sulfide in natural waters // Limnol. Oceanogr. 1969. V. 14. P. 454–458. https://doi.org/10.4319/lo.1969.14.3.0454
  10. Cochrane W. J., Jones P. S., Sanders P. F., Holt D. M., Mosley M. J. Studies on the thermophilic sulfate-reducing bacteria from a souring North Sea oil field / Proceedings of the Society of Petroleum Engineers, European Petroleum Conference, London, UK. 1988. P. 301–316. https://doi.org/10.2118/18368-MS
  11. Collins M. D. Analysis of isoprenoid quinones // Methods Microbiol. / Ed. G. Gottschalk. New York: Academic Press, 1985. V. 18. P. 329–366.
  12. Cravo-Laureau C., Matheron R., Cayol J. L., Joulian C., Hirschler-Réa A. Desulfatibacillum aliphaticivorans gen. nov., sp nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 77–83. https://doi.org/10.1099/ijs.0.02717-0
  13. Cravo-Laureau C., Labat C., Joulian C., Matheron R., Hirschler-Réa A. Desulfatiferula olefinivorans gen. nov., sp. nov., a long-chain n-alkene-degrading, sulfate-reducing bacterium // Int. J. Syst. Evol. Microbiol. 2007. V. 57. P. 2699–2702. https://doi.org/10.1099/ijs.0.65240-0
  14. Davidova I. A., Duncan K. E., Choi O. K., Suflita J. M. Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 2737–2742. https://doi.org/10.1099/ijs.0.64398-0
  15. Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K. H., Horikoshi K. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk // Appl. Environ. Microbiol. 2003. V. 69. P. 7224–7235. https://doi.org/10.1128%2FAEM.69.12.7224-7235.2003
  16. Hahn C. J., Laso-Pérez R., Vulcano F., Vaziourakis K. M., Stokke R., Steen I. H., Teske A., Boetius A., Liebeke M., Amann R., Knittel K. “Candidatus Ethanoperedens,” a thermophilic genus of archaea mediating the anaerobic oxidation of ethane // MBio. 2020. V. 11. Art. e00600-20. https://doi.org/10.1128/mbio.00600-20
  17. Heider J., Szaleniec M., Martins B. M., Seyhan D., Buckel W., Golding B. T. Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes // J. Mol. Microbiol. Biotechnol. 2016. V. 26. P. 29–44. https://doi.org/10.1159/000441656
  18. Jørgensen B. B., Findlay A. J., Pellerin A. The biogeochemical sulfur cycle of marine sediments // Front. Microbiol. 2019. V. 10. Art. 849. https://doi: 10.3389/fmicb.2019.00849
  19. Kniemeyer O., Musat F., Sievert S. M., Knittel K., Wilkes H., Blumenberg M., Michaelis M., Classen A., Bolm C., Joye S.-B., Widdel F. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria // Nature. 2007. V. 449. P. 898–901. https://doi.org/10.1038/nature06200
  20. Laso-Perez R., Wegener G., Knittel K., Widdel F., Harding K. J., Krukenberg V., Meier D. V., Richter M., Tegetmeyer H. E., Riedel D., Richnow H. H., Adrian L., Reemtsma T., Lechtenfeld O. J., Musat F. Thermophilic archaea activate butane via alkyl-coenzyme M formation // Nature. 2016. V. 539. P. 396–401. https://doi.org/10.1038/nature20152
  21. Leu J. Y., McGovern-Traa C.P., Porter A. J., Hamilton W. A. The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea // Lett. Appl. Microbiol. 1999. V. 29. P. 246–252. https://doi.org/10.1046/j.1365-2672.1999.00628.x
  22. Lovley D. R., Phillips E. J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments // Appl. Environ. Microbiol. 1986. V. 51. P. 683–689. https://doi.org/10.1128%2Faem.51.4.683-689.1986
  23. Murray R., Doetsch R., Robinow C. Methods for general and molecular bacteriology // Eds. Gerhardt P., Murray R. G.E., Wood W. A., Kreig N. R. Washington DC: American Society for Microbiology, 1994. P. 791.
  24. Pilloni G., von Netzer F., Engel M., Lueders T. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP // FEMS Microbiol. Ecol. 2011. V. 78. P. 165–175. https://doi.org/10.1111/j.1574-6941.2011.01083.x
  25. Ramamoorthy S., Sass H., Langner H., Schumann P., Kroppenstedt R. M., Spring S., Overmann J., Rosenzweig R. F. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments // Int. J. Syst. Evol. Microbiol. 2006. V. 56. P. 2729–2736. https://doi.org/10.1099/ijs.0.63610-0
  26. Revsbech N. P., Jørgensen B. B., Blackburn T. H. Oxygen in the sea bottom measured with a microelectrode // Science. V. 207. P. 1355–1356. https://doi.org/10.1126/science.207.4437.1355
  27. Richter M., Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 19126–19131. https://doi.org/10.1073/pnas.0906412106
  28. Shakirov R. B., Valitov M. G., Obzhirov A. I., Mishukov V. F., Yatsuk A. V., Syrbu N. S., Mishukova O. V. Methane anomalies, its flux on the sea-atmosphere interface and their relations to the geological structure of the South-Tatar sedimentary basin (Tatar Strait, the Sea of Japan) // Mar. Geophys. Res. 2019. V. 40. P. 581–600. https://doi.org/10.1007/s11001-019-09389-3
  29. Shou L. B., Liu Y. F., Zhou J., Liu Z. L., Zhou L., Liu J. F., Yang S. Z., Gu J. D., Mu B. Z. New evidence for a hydroxylation pathway for anaerobic alkane degradation supported by analyses of functional genes and signature metabolites in oil reservoirs // AMB Express. 2021. V. 11. P. 1–10. https://doi.org/10.1186/s13568-020-01174-5
  30. Spring S., Rosenzweig F. The genera Desulfitobacterium and Desulfosporosinus: taxonomy // The Prokaryotes. 2006. V. 4. P. 771–786. http://dx.doi.org/10.1007/0-387-30744-3_24
  31. Sun W., Sun X., Cupples A. M. Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium // Int. Biodeterior. Biodegr. 2014. V. 88. P. 13–19. https://doi.org/10.1016/j.ibiod.2013.11.014
  32. Vandieken V., Niemann H., Engelen B., Cypionka H. Marinisporobacter balticus gen. nov., sp. nov., Desulfosporosinus nitroreducens sp. noV. and Desulfosporosinus fructosivorans sp. nov., new spore-forming bacteria isolated from subsurface sediments of the Baltic Sea // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 1887–1893. https://doi.org/10.1099/ijsem.0.001883
  33. Zeng Y., Zou Y., Chen B., Grebmeier J. M., Li H., Yo Yu, Zheng T. Phylogenetic diversity of sediment bacteria in the northern Bering // Polar Biol. 2011. V. 34. P. 907–919. http://dx.doi.org/10.1007/s00300-010-0947-0
  34. Zeng Y.-X., Yu Y., Li H.-R., Luo W. Prokaryotic community composition in Arctic Kongsfjorden and Sub-Arctic northern Bering Sea sediments as revealed by 454 pyrosequencing // Front. Microbiol. 2017. V. 8. Art. 2498. https://doi.org/10.3389%2Ffmicb.2017.02498

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM micrograph of cells of strain SRJS8T.

下载 (277KB)
3. Fig. 2. Dendrograms of the SBB of the genus Desulfosporosinus, constructed on the basis of the analysis of nucleotide sequences of the 16S rRNA gene, 1340 nt (a); 49 groups of orthologous genes (b).

下载 (575KB)
4. Fig. 3. Biodegradation of oil hydrocarbons by strains SRJS8T and D. lacus STP12T.

下载 (297KB)
5. Fig. 4. Phylogenetic dendrogram showing the amino acid sequence assignment of MasD/AssA and BssA of known n-alkane degraders (the substrates used are shown in parentheses) to strains SRJS8T and D. lacus STP12T (other representatives of the genus Desulfosporosinus are not shown). BssA – benzylsuccinate synthase; MasD/AssA – (methyl)alkyl-succinate synthase; PflD/PflE – subunits of pyruvate formate lyase. The scale bar shows 5% of the putative sequence divergence. The amino acid sequence number of the encoded protein is shown in square brackets.

下载 (351KB)
6. Supplementary Material
下载 (67KB)

版权所有 © Russian Academy of Sciences, 2025