Azospirillum bacteria form biofilms with Enterobacter cloacae K7 in the root system of wheat seedlings

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biofilm formation has equal adaptive significance for both epiphytic and endophytic rhizobacteria due to their primary localization on the surface of plant roots. The typical strains Azospirillum brasilense Sp7 and A. baldaniorum Sp245 formed biofilms in the root system of wheat (Triticum aestivum L.) mainly in the zones of the root apex and root hairs, as well as in the places of formation of lateral roots. In the case of the strain Enterobacter cloacae K7 isolated from the roots of Jerusalem artichoke (Helianthus tuberosus L.), biofilm formation in certain root zones was not a characteristic feature. Strain K7 colonized the roots, forming biofilms on the surface of the conduction, absorption, and root tip zones. The strains Sp7/Sp245 and K7 were not antagonists, and in the population of their mixed biofilms (studied on the Sp7 and K7 model), the proportions of subpopulations of each strain were approximately the same. However, in the root system of seedlings inoculated with mixed cultures of K7 and Sp7/Sp245, there were areas in the biofilms in which multicellular clusters of one strain were isolated from the cluster of bacteria of the other. Diffuse distribution of Sp7/Sp245 cells among enterobacteria or K7 cells between azospirillum was not typical.

Full Text

Restricted Access

About the authors

A. V. Sheludko

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Author for correspondence.
Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

D. I. Mokeev

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

L. P. Petrova

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

E. M. Telesheva

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

I. V. Volokhina

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

Yu. A. Filipcheva

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

I. V. Borisov

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

E. V. Kryuchkova

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

L. Yu. Matora

FRC “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of biochemistry and physiology of plants and microorganisms

Russian Federation, Saratov, 410049

References

  1. Баймиев Ан.Х., Ямиданов Р. С., Матниязов Р. Т., Благова Д. К., Баймиев Ал.Х., Чемерис А. В. Получение флуоресцентно меченных штаммов клубеньковых бактерий дикорастущих бобовых для их детекции in vivo и in vitro // Мол. биология. 2011. Т. 45. С. 984–991.
  2. Baymiev A. K., Yamidanov R. S., Matniyazov R. T., Blagova D. K., Baymiev Al.K., Chemeris A. V. Preparation of fluorescent labeled nodule bacteria strains of wild legumes for their detection in vivo and in vitro // Mol. Biol. 2011. V. 45. P. 904–910. https://doi.org/10.1134/S0026893311060033
  3. Матора Л. Ю., Шварцбурд Б. И., Щеголев С. Ю. Иммунохимический анализ О-специфических полисахаридов почвенных азотфиксирующих бактерий Azospirillum brasilense // Микробиология. 1998. Т. 67. С. 815–820.
  4. Matora L.Yu., Shvartsburd B. I., Shchegolev S.Yu. Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacteria Azospirillum brasilense // Microbiology (Moscow). 1998. V. 67. P. 677–681.
  5. Олескин А. В., Ботвинко И. В., Цавкелова Е. А. Колониальная организация и межклеточная коммуникация у микроорганизмов // Микробиология. 2000. Т. 69. С. 309–327.
  6. Olskin A. V., Botvinko I. V., Tsavkelova E. A. Colonial organization and intercellular communication in microorganisms // Microbiology (Moscow). 2000. V. 69. P. 309–327.
  7. Шелудько А. В., Широков А. А., Соколова М. К., Соколов О. И., Петрова Л. П., Матора Л. Ю., Кацы Е. И. Колонизация корней пшеницы бактериями Azospirillum brasilense с различной подвижностью // Микробиология. 2010. Т. 79. С. 696–704.
  8. Shelud’ko A.V., Shirokov A. A., Sokolova M. K., Sokolov O. I., Petrova L. P., Matora L.Yu., Katsy E. I. Wheat root colonization by Azospirillum brasilense strains with different motility // Microbiology (Moscow). 2010. V. 79. P. 688–695. https://doi.org/10.1134/S0026261710050140
  9. Шелудько А. В., Мокеев Д. И., Евстигнеева С. С., Филипьечева Ю. А., Буров А. М., Петрова Л. П., Пономарева Е. Г., Кацы Е. И. Анализ ультраструктуры клеток в составе биопленок бактерий Azospirillum brasilense // Микробиология. 2020. Т. 89. С. 59–73. https://doi: 10.1134/S0026365620010140
  10. Shelud’ko A.V., Mokeev D. I., Evstigneeva S. S., Filip’echeva Yu.A., Burov A. M., Petrova L. P., Ponomareva E. G., Katsy E. I. Cell ultrastructure in biofilms of Azospirillum brasilense // Microbiology (Moscow). 2020. V. 89. P. 50–63. https://doi.org/10.1134/S0026261720010142
  11. Baldani V. L.D., Baldani J. I., Döbereiner J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat // Can. J. Microbiol. 1983. V. 29. P. 924–929. https://doi.org/10.1139/m83-148
  12. Bashan Y., de-Bashan L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment // AdV. Agron. 2010. V. 108. P. 77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
  13. Cámara M., Green W., MacPhee C.E., Rakowska P. D., Raval R., Richardson M. C., Slater-Jefferies J., Steventon K., Webb J. S. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge // Biofilms Microbiomes. 2022. V. 8. Art. 42. https://doi: 10.1038/s41522-022-00306-y
  14. Creus C. M., Sueldo R. J., Barassi C. A. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field // Can. J. Bot. 2004. V. 82. P. 273–281. http://dx.doi.org/10.1139/b03-119
  15. Díaz P. R., Romero M., Pagnussatt L., Amenta M., Valverde C. F., Cámara M., Creus C. M., Maroniche G. A. Azospirillum baldaniorum Sp245 exploits Pseudomonas fluorescens A506 biofilm to overgrow in dual-species macrocolonies // Environ. Microbiol. 2022. V. 24. P. 5707–5720. https://doi: 10.1111/1462-2920.16195
  16. Dobereiner J., Day J. M. Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites // Symp. on Nitrogen Fixation / Eds. Newton W. E., Nijmans C. J. Pullman: Washington State University Press, 1976. P. 518–538. https://doi.org/10.12691/aees-4-4-1
  17. Dos Santos Ferreira N., Sant’Anna F.H., Reis V. M., Ambrosini A., Volpiano C. G., Rothballer M., Schwab S., Baura V. A., Balsanelli E., de Oliveira Pedrosa F., Pereira Passaglia L. M., Maltempi de Souza E., Hartmann A., Cassan F., Zilli J. E. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 6203–6212. https://doi.org/10.1099/ijsem.0.004517
  18. Fibach-Paldi S., Burdman S., Okon Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promoting abilities of Azospirillum brasilense // FEMS Microbiol. Lett. 2012. V. 326. P. 99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x
  19. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation // AMB Expr. 2018. V. 8. P. 73–85. https://doi: 10.1186/s13568-018-0608-1
  20. Hendriksen N. B. Microbial biostimulants – the need for clarification in EU regulation // Trends Microbiol. 2022. V. 30. P. 311–313. https://doi.org/10.1016/j.tim.2022.01.008
  21. Kumar K., Lall C., Raj R., Vedhagiri K., Vijayachari P. Coexistence and survival of pathogenic leptospires by formation of biofilm with Azospirillum // FEMS Microbiol. Ecol. 2015. V. 91. Art. fiv051. https://doi.org/10.1093/femsec/fiv051
  22. Kryuchkova Y. V., Burygin G. L., Gogoleva N. E., Gogolev Y. V., Chernyshova M. P., Makarov O. E., Fedorov E. E., Turkovskaya O. V. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7 // Microbiol. Res. 2014. V. 169. P. 99–105. https://doi: 10.1016/j.micres.2013.03.002
  23. Mishkind M., Raikhel N. V., Palevitz B. A., Keegstra K. Immunocytochemical localization of wheat germ agglutinin in wheat // J. Cell Biol. 1982. V. 92. P. 753–764. https://doi.org/10.1083/jcb.92.3.753
  24. O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis // Mol. Microbiol. 1998. V. 28. P. 449–461. 10.1046/j.1365-2958.1998.00797.x' target='_blank'>https://doi: 10.1046/j.1365-2958.1998.00797.x
  25. Pagnussat L. A., Salcedo F., Maroniche G., Keel C., Valverde C., Creus C. M. Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense–Pseudomonas protegens co-cultivation // FEMS Microbiol. Lett. 2016. V. 363. Art. fnw238. https://doi.org/10.1093/femsle/fnw238
  26. Prosser J. I. Molecular marker systems for the detection of genetically modified microorganisms in the environment // Microbiology (Reading).1994. V. 140. P. 5–17. https://doi: 10.1099/13500872-140-1-5
  27. Ramirez-Mata A., Pacheco M. R., Moreno S. J., Xiqui-Vazquez M.L., Baca B. E. Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots // Microbiol Res. 2018. V. 215. P. 155–163. https://doi.org/10.1016/j.micres.2018.07.007
  28. Rostamian A., Payam Moaveni P., Sadeghi-Shoae M., Mozafari H., Rajabzadeh F. Effective drought mitigation by rhizobacteria consortium in wheat field trials // Rhizosphere. 2023. V. 25. Art. 100653. https://doi.org/10.1016/j.rhisph.2022.100653
  29. Schloter M., Hartmann A. Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies // Symbiosis. 1998. V. 25. P. 159–179.
  30. Shelud’ko A., Volokhina I., Mokeev D., Telesheva E., Yevstigneeva S., Burov A., Tugarova A., Shirokov A., Burigin G., Matora L., Petrova L. Chromosomal gene of hybrid multisensor histidine kinase is involved in motility regulation in the rhizobacterium Azospirillum baldaniorum Sp245 under mechanical and water stress // World J. Microbiol. Biotechnol. 2023. V. 39. Art. 336. https://doi.org/10.1007/s11274-023-03785-z
  31. Singh D., Thapa S., Singh J. P., Mahawar H., Saxena A. K., Singh S. K., Mahla H. R., Choudhary M., Parihar M., Choudhary K. B., Chakdar H. Prospecting the potential of plant growth-promoting microorganisms for mitigating drought stress in crop plants // Curr. Microbiol. 2024. V. 81. Art. 84. https://doi: 10.1007/s00284-023-03606-4
  32. Tarrand J. J., Krieg N. R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group with description of a new genus, Azospirillum gen. noV. and two species, Azospirillum lipoferum (Beijerinck) comb. noV. and Azospirillum braslense sp. nov // Can. J. Microbiol. 1978. V. 24. P. 967–980. https://doi.org/10.1139/m78-160
  33. Tombolini R., Unge A., Davey M. E., de Bruijn F. J., Janet K Jansson J. K. Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria // FEMS Microbiol. Ecol. 1997. V. 22. P. 17–28. https://doi.org/10.1111/j.1574-6941.1997.tb00352.x
  34. Wang D., Xu A., Elmerich C., Ma L. Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions // ISME J. 2017. V. 11. P. 1602–1613. https://doi: 10.1038/ismej.2017.30
  35. Xue Q., Wang X., Zhang K., Zhang J., Gao N., Min J., He Y., Wu Z., Chang X. Enterobacter cloacae Rs-2 inoculum replaces fertiliser application by half in the field and modifies microbial community structure // Rhizosphere. 2024. V. 31. Art. 100942. https://doi.org/10.1016/j.rhisph.2024.100942

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Formation and interactions of macrocolonies of Azospirillum and Enterobacter strains in semi-solid MSM with 1 g/L NH4Cl for 72 h. Panel A: colonies of A. brasilense strains Sp7, Sp7-pJN105TurboGFP, Sp7-pJN105TurboRFP, E. cloacae K7 and K7-pJN105TurboGFP (left); colonies of E. cloacae strains K7 and K7-pJN105TurboGFP (middle); colonies of A. baldaniorum strains Sp245, Sp245-pJN105TurboGFP, Sp245-pJN105TurboRFP and E. cloacae K7 and K7-pJN105TurboGFP (right). Panel B: Effect of nitrogen source on the size of A. baldaniorum Sp245 macrocolonies (1) and their “collision” zones (2). Scale bar corresponds to 10 mm.

Download (580KB)
3. Fig. 2. Results of immunochemical studies of biofilms formed by A. brasilense Sp7 (1 and 2), A. baldaniorum Sp245 (6 and 7) and E. cloacae K7 (4 and 5) strains on glass under liquid medium for 7 days of cultivation. Panel A shows a comparison of the relative content (RC%) of Sp7 or K7 antigens in biofilms formed by mixed cultures of these strains. ELISA was used to determine the RC%. One-way analysis of variance (ANOVA) was used to determine the significance of differences in RC%; a indicates no significant differences between the means. Panel B shows the results of the interaction of planktonic culture cell extracts (1, 4 and 6) or biofilm biomass (2, 3, 5, 7 and 8) with strain-specific Abs (Abs to antigens of strains Sp7 (AtSp7), Sp245 (AtSp245) and (AtK7)). Extracts of biomass from biofilms formed by mixed cultures of Sp7 and K7 (3) or Sp245 and K7 (8).

Download (480KB)
4. Fig. 3. Confocal microscopy results of the root system of wheat seedlings inoculated with A. brasilense Sp7, A. baldaniorum Sp245, and E. cloacae K7 containing pJN105TurboGFP or pJN105TurboRFP plasmids (7 days after inoculation). Panels A, C, and D show the microscopy results of wheat inoculated with Sp245(pJN105TurboRFP) and K7(pJN105TurboGFP). Panels B and D illustrate the microscopy results of plants inoculated with Sp7(pJN105TurboRFP) and K7(pJN105TurboGFP). Panel E shows the microscopic images of seedlings inoculated with Sp7(pJN105TurboGFP) or Sp245 (pJN105TurboGFP) monocultures. Grayscale images represent visible light. Green or red colors represent the detection of GFP or RFP fluorescence. Panels A, B, D, and E represent the microscopic images of the root absorptive zone. Panels D and B represent the microscopic images of the conduction zone and root tip, respectively.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences