Neurobiological foundations of the formation of behavior and use of psychoactive substances among adolescents (literature review)
- Authors: Bulycheva E.V.1
-
Affiliations:
- Orenburg State Medical University
- Issue: Vol 101, No 4 (2022)
- Pages: 449-452
- Section: HYGIENE OF CHILDREN AND ADOLESCENTS
- Published: 06.05.2022
- URL: https://rjpbr.com/0016-9900/article/view/639359
- DOI: https://doi.org/10.47470/0016-9900-2022-101-4-449-452
- ID: 639359
Cite item
Full Text
Abstract
Introduction. Adolescence is a critical period over ontogenesis. The complex and heterochronous maturation of various brain structures under the influence of several biologically active substances such as neurotransmitters and hormones, determines the peak of the implementation of risky behavior, including those that promote the gain in the risk of psychoactive substances used by adolescents. At the same time, the variability of behaviour and the degree of risk of use in adolescence is strictly individual and depends on genetic factors. In this regard, the accumulated experience of research on the study of the relationship between neurobiology and genetics in the aspect of the implementation of mental behavioral risk factors becomes relevant.
The analysis of scientific literature for the period from 2009 to 2021 in the scientometric databases WoS, Scopus, PubMed, Google Scholar, RSCI was carried out. 59 scientific reports were selected for a systematic review. Modern molecular genetic studies often reveal connections between a specific gene and a wide range of mental brain functions related to different levels of individuality. In the scientific literature, this is explained by the fact that a significant part of the genes is expressed in most brain structures and can be included in various neural systems that provide mental activity. Many gene polymorphisms are established to determine the neurobiology of maturation of the main structures of the brain, which indirectly determines the behavioral risks and risks of substance use over adolescence.
Conclusion. Individual genetic polymorphisms affect multidimensional and heterogeneous behavior and character traits, based on neurobiological processes. The study of the effect of gene polymorphism on brain function is highly relevant and promising for research in this area.
Conflict of interest. The author declares no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: November 11, 2021 / Accepted: April 12, 2022 / Published: April 30, 2022
About the authors
Ekaterina V. Bulycheva
Orenburg State Medical University
Author for correspondence.
Email: e-sosnina@mail.ru
ORCID iD: 0000-0002-8215-8674
MD, PhD, assistant professor of preventative medicine department. Orenburg State Medical University, 460000, Orenburg, Russian Federation.
e-mail: e-sosnina@mail.ru
Russian FederationReferences
- Dick D.M., Adkins A.E., Kuo S.I. Genetic influences on adolescent behavior. Neurosci. Biobehav. Rev. 2016; 70: 198–205. https://doi.org/10.1016/j.neubiorev.2016.07.007
- Spear L.P., Silveri M.M. Special issue on the adolescent brain. Neurosci. Biobehav. Rev. 2016; 70: 1–3. https://doi.org/10.1016/j.neubiorev.2016.08.004
- Mills K.L., Goddings A.L., Herting M.M., Meuwese R., Blakemore S.J., Crone E.A., et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016; 141: 273–81. https://doi.org/10.1016/j.neuroimage.2016.07.044
- Padmanabhan A., Luna B. Developmental imaging genetics: linking dopamine function to adolescent behavior. Brain Cogn. 2014; 89: 27–38. https://doi.org/10.1016/j.bandc.2013.09.011
- Dick D.M., Aliev F., Krueger R.F., Edwards A., Agrawal A., Lynskey M., et al. Genome-wide association study of conduct disorder symptomatology. Mol. Psychiatry. 2011; 16: 800–8. https://doi.org/10.1038/mp.2010.73
- Zheng Y., Brendgen M., Dionne G., Boivin M., Vitaro F. Genetic and environmental influences on developmental trajectories of adolescent alcohol use. Eur. Child Adolesc. Psychiatry. 2019; 28(9): 1203–12. https://doi.org/10.1007/s00787-019-01284-x
- Blakemore S.J., Mills K.L. Is adolescence a sensitive period for sociocultural processing? Annu. Rev. Psychol. 2014; 65: 187–207. https://doi.org/10.1146/annurev-psych-010213-115202
- Koelch M.G., Döpfner M., Freitag C.M., Dulz B., Rösler M. Störung des Sozialverhaltens und Antisoziale Persönlichkeitsstörung – Herausforderungen in der Transition vom Jugend – zum Erwachsenenalter. Fortschr. Neurol. Psychiatr. 2019; 87(11): 634–7. https://doi.org/10.1055/a-0984-5929 (in German)
- Fairchild G., Passamonti L., Hurford G., Hagan C.C., von dem Hagen E.A., van Goozen S.H., et al. Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. Am. J. Psychiatry. 2011; 168(6): 624–33. https://doi.org/10.1176/appi.ajp.2010.10081184
- Rogers J.C., De Brito S.A. Cortical and subcortical gray matter volume in youths with conduct problems: a meta-analysis. JAMA Psychiatry. 2016; 73(1): 64–72. https://doi.org/10.1001/jamapsychiatry.2015.2423
- Dalwani M.S., McMahon M.A., Mikulich-Gilbertson S.K., Young S.E., Regner M.F., Raymond K.M., et al. Female adolescents with severe substance and conduct problems have substantially less brain gray matter volume. PLoS One. 2015; 10(5): e0126368. https://doi.org/10.1371/journal.pone.0126368
- Kerekes N., Zouini B., Karlsson E., Cederholm E., Lichtenstein P., Anckarsäter H., et al. Conduct disorder and somatic health in children: a nationwide genetically sensitive study. BMC Psychiatry. 2020; 20(1): 595. https://doi.org/10.1186/s12888-020-03003-2
- Wang S., Qian Y., Wei K., Kong W. Identifying biomarkers of Alzheimer’s Disease via a Novel structured sparse canonical correlation analysis approach. J. Mol. Neurosci. 2021; 72(2): 323–35. https://doi.org/10.1007/s12031-021-01915-6
- Liu Y.H., Zhu J., Constantinidis C., Zhou X. Emergence of prefrontal neuron maturation properties by training recurrent neural networks in cognitive tasks. iScience. 2021; 24(10): 103178. https://doi.org/10.1016/j.isci.2021.103178
- Bendersky C.J., Milian A.A., Andrus M.D., De La Torre U., Walker D.M. Long-term impacts of post-weaning social isolation on nucleus accumbens function. Front. Psychiatry. 2021; 12: 745406. https://doi.org/10.3389/fpsyt.2021.745406
- Loheide-Niesmann L., Vrijkotte T.G.M., De Rooij S.R., Wiers R.W., Huizink A. Associations between autonomic nervous system activity and risk-taking and internalizing behavior in young adolescents. Psychophysiology. 2021; 58(9): e13882. https://doi.org/10.1111/psyp.13882
- Ernst M. The triadic model perspective for the study of adolescent motivated behavior. Brain. Cogn. 2014; 89: 104–11. https://doi.org/10.1016/j.bandc.2014.01.006
- Piray P., Toni I., Cools R. Human choice strategy varies with anatomical projections from ventromedial prefrontal cortex to medial striatum. J. Neurosci. 2016; 36(10): 2857–67. https://doi.org/10.1523/JNEUROSCI.2033-15.2016
- Gopinath K., Ringe W., Goyal A., Carter K., Dinse H.R., Haley R., et al. Striatal functional connectivity networks are modulated by fMRI resting state conditions. Neuroimage. 2011; 54(1): 380–8. https://doi.org/10.1016/j.neuroimage.2010.07.021
- Tang W., Jbabdi S., Zhu Z., Cottaar M., Grisot G., Lehman J.F., et al. A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. Elife. 2019; 8: e43761. https://doi.org/10.7554/eLife.43761
- Gladwin T.E., Figner B., Crone E.A., Wiers R.W. Addiction, adolescence, and the integration of control and motivation. Dev. Cogn. Neurosci. 2011; 1(4): 364–76. https://doi.org/10.1016/j.dcn.2011.06.008
- Hammond C.J., Allick A., Rahman N., Nanavati J. Structural and functional neural targets of addiction treatment in adolescents and young adults: a systematic review and meta-analysis. J. Child. Adolesc. Psychopharmacol. 2019; 29(7): 498–507. https://doi.org/10.1089/cap.2019.0007
- Owens M.M., Syan S.K., Amlung M., Beach S.R.H., Sweet L.H., MacKillop J. Functional and structural neuroimaging studies of delayed reward discounting in addiction: A systematic review. Psychol. Bull. 2019; 145(2): 141–64. https://doi.org/10.1037/bul0000181
- Smith C.T., Dang L.C., Buckholtz J.W., Tetreault A.M., Cowan R.L., Kessler R.M., et al. The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum. Transl. Psychiatry. 2017; 7(4): e1091. https://doi.org/10.1038/tp.2017.45
- Vavilova E.A., Solodkaya E.V., Loginov I.P. The role of polymorphisms of the serotoninergic genes in the pathogenesis of depression and suicidal behavior (analytical review). Dal’nevostochnyy meditsinskiy zhurnal. 2020; (4): 78–84. https://doi.org/10.35177/1994-5191-2020-4-78-84 (in Russian)
- Sadkowski M., Dennis B., Clayden R.C., Elsheikh W., Rangarajan S., Dejesus J., et al. The role of the serotonergic system in suicidal behavior. Neuropsychiatr. Dis. Treat. 2013; 9: 1699–716. https://doi.org/10.2147/ndt.s50300
- Ryan E.P., Oquendo M.A. Suicide risk assessment and prevention: challenges and opportunities. Focus (Am. Psychiatr. Publ). 2020; 18(2): 88–99. https://doi.org/10.1176/appi.focus.20200011
- McEwen B.S., Gray J.D., Nasca C. Recognizing resilience: Learning from the effects of stress on the brain. Neurobiol. Stress. 2015; 1: 1–11. https://doi.org/10.1016/j.ynstr.2014.09.001
- Marceau K., Abel E.A. Mechanisms of cortisol – Substance use development associations: Hypothesis generation through gene enrichment analysis. Neurosci. Biobehav. Rev. 2018; 92: 128–39. https://doi.org/10.1016/j.neubiorev.2018.05.020
- Dauvilliers Y., Tafti M., Landolt H.P. Catechol-O-methyltransferase, dopamine, and sleep-wake regulation. Sleep Med. Rev. 2015; 22: 47–53. https://doi.org/10.1016/j.smrv.2014.10.006
- Schacht J.P. COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. Pharmacogenomics J. 2016; 16(5): 430–8. https://doi.org/10.1038/tpj.2016.43
- Richter A., de Boer L., Guitart-Masip M., Behnisch G., Seidenbecher C.I., Schott B.H. Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. J. Neural. Transm. (Vienna). 2021; 128(11): 1705–20. https://doi.org/10.1007/s00702-021-02382-4
- Leukel C., Schümann D., Kalisch R., Sommer T., Bunzeck N. Dopamine related genes differentially affect declarative long-term memory in healthy humans. Front. Behav. Neurosci. 2020; 14: 539725. https://doi.org/10.3389/fnbeh.2020.539725
- Xiao X., Zhang C.Y., Zhang Z., Hu Z., Li M., Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol. Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01329-1
- Wahlstrom D., Collins P., White T., Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010; 72(1): 146–59. https://doi.org/10.1016/j.bandc.2009.10.013
- Wahlstrom D., White T., Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci. Biobehav. Rev. 2010; 34(5): 631–48. https://doi.org/10.1016/j.neubiorev.2009.12.007
- Kovsh E.M., Ermakov P.N., Vorob’eva E.V. The association of the polymorphic marker VAL158MET of gene COMT with the level of aggressiveness and strategies of behavior in conflict among girls 18–24 years old. Severo-Kavkazskiy psikhologicheskiy vestnik. 2015; 13(3): 15–21. (in Russian)
- Chen S., Qian A., Tao J., Zhou R., Fu C., Yang C., et al. Different effects of the DRD4 genotype on intrinsic brain network connectivity strength in drug-naïve children with ADHD and healthy controls. Brain Imaging Behav. 2021; 16(1): 464–75. https://doi.org/10.1007/s11682-021-00521-9
- Dick D.M., Adkins A.E., Kuo S.I. Genetic influences on adolescent behavior. Neurosci. Biobehav. Rev. 2016; 70: 198–205. https://doi.org/10.1016/j.neubiorev.2016.07.007
- Mota N.R., Bau C.H., Banaschewski T., Buitelaar J., Ebstein R., Franke B., et al. Association between DRD2/DRD4 interaction and conduct disorder: A potential developmental pathway to alcohol dependence. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2013; 162B: 546–9. https://doi.org/10.1002/ajmg.b.32179
- González-Castro T.B., Tovilla-Zárate C.A., Juárez-Rojop I., Pool García S., Genis A., Nicolini H., et al. Association of 5HTR1A gene variants with suicidal behavior: case-control study and updated meta-analysis. J. Psychiatr. Res. 2013; 47(11): 1665–72. https://doi.org/10.1016/j.jpsychires.2013.04.011
- Cybulska A.M., Szkup M., Schneider-Matyka D., Skonieczna-Żydecka K., Kaczmarczyk M., Jurczak A., et al. Depressive symptoms among middle-aged women-understanding the cause. Brain Sci. 2020; 11(1): 26. https://doi.org/10.3390/brainsci11010026
- Im S., Jeong J., Jin G., Yeom J., Jekal J., Lee S.I., et al. MAOA variants differ in oscillatory EEG & ECG activities in response to aggression-inducing stimuli. Sci. Rep. 2019; 9(1): 2680. https://doi.org/10.1038/s41598-019-39103-7
- Kryuchkova A.S., Ermakova P.N., Abakumova I.V. The analysis of the association of the maoa gene polymorphism with aggressive and hostile behaviour strategies in adolescents and young people. Rossiyskiy fiziologicheskiy zhurnal. 2016; 13(1): 115–24. (in Russian)
- Egorova M.S., Chertkova Yu.D. MAOA polymorphism and variation in psychological traits. Psikhologicheskie issledovaniya: elektronnyy nauchnyy zhurnal. 2011; (6): 14. https://doi.org/10.54359/ps.v4i20.807
- Strozenko L.A., Gordeev V.V., Lobanov Yu.F., Momot A.P. Gender characteristics of quality of life of adolescents – folate carrier gene cycle. Mat’ i ditya v Kuzbasse. 2013; (3): 38–43. (in Russian)
- Marceau K., Abel E.A. Mechanisms of cortisol – substance use development associations: Hypothesis generation through gene enrichment analysis. Neurosci. Biobehav. Rev. 2018; 92: 128–39. https://doi.org/10.1016/j.neubiorev.2018.05.020
- Elton A., Garbutt J.C., Boettiger C.A. Risk and resilience for alcohol use disorder revealed in brain functional connectivity. Neuroimage. Clin. 2021; 32: 102801. https://doi.org/10.1016/j.nicl.2021.102801
- Wang K., Duan Y., Duan W., Yu Y., Zheng N., Hu J., et al. Bibliometric insights in genetic factors of substance-related disorders: intellectual developments, turning points, and emerging trends. Front Psychiatry. 2021; 12: 620489. https://doi.org/10.3389/fpsyt.2021.620489
- Patterson A., Vu M., Haardörfer R., Windle M., Berg C.J. Motives for alcohol and marijuana use as predictors of use and problem use among young adult college students. J. Drug. Issues. 2020; 50(4): 359–77. https://doi.org/10.1177/0022042620917101
- Kendler K.S., Maes H.H., Sundquist K., Ohlsson H., Sundquist J. Genetic and family and community environmental effects on drug abuse in adolescence: a Swedish national twin and sibling study. Am. J. Psychiatry. 2014; 171: 209–17. https://doi.org/10.1176/appi.ajp.2013.12101300
- Grant J.D., Lynskey M.T., Madden P.A., Nelson E.C., Few L.R., Bucholz K.K., et al. The role of conduct disorder in the relationship between alcohol, nicotine and cannabis use disorders. Psychol. Med. 2015; 45(16): 3505–15. https://doi.org/10.1017/S0033291715001518
- Koijam A.S., Hijam A.C., Singh A.S., Jaiswal P., Mukhopadhyay K., Rajamma U., et al. Association of dopamine transporter gene with heroin dependence in an Indian subpopulation from Manipur. J. Mol. Neurosci. 2021; 71(1): 122–36. https://doi.org/10.1007/s12031-020-01633-5
- Kalsi G., Euesden J., Coleman J.R., Ducci F., Aliev F., Newhouse S.J., et al. Genome-Wide Association of Heroin Dependence in Han Chinese. PloS One. 2016; 11: e0167388. https://doi.org/10.1371/journal.pone.0167388
- Sherva R., Wang Q., Kranzler H., Zhao H., Koesterer R., Herman A., et al. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry. 2016; 73: 472–80. https://doi.org/10.1001/jamapsychiatry.2016.0036
- Wetherill L., Agrawal A., Kapoor M., Bertelsen S., Bierut L.J., Brooks A., et al. Association of substance dependence phenotypes in the COGA sample. Addiction Biol. 2015; 20: 617–27. https://doi.org/10.1111/adb.12153
- Meyers J.L., Salvatore J.E., Vuoksimaa E., Korhonen T., Pulkkinen L., Rose R.J., et al. Genetic influences on alcohol use behaviors have diverging developmental trajectories: A prospective study among male and female twins. Alcohol Clin. Exp. Res. 2014; 38: 2869–77. https://doi.org/10.1111/acer.12560
- Vrieze S.I., Hicks B.M., Iacono W.G., McGue M. Decline in genetic influence on the co-occurrence of alcohol, marijuana, and nicotine dependence symptoms from age 14 to 29. Am. J. Psychiatry. 2012; 169: 1073–81. https://doi.org/10.1176/appi.ajp.2012.11081268
- Squeglia L.M., Gray K.M. Alcohol and drug use and the developing brain. Curr. Psychiatry. Rep. 2016; 18(5): 46. https://doi.org/10.1007/s11920-016-0689-y
Supplementary files
