General toxic and cardiovascular toxic impact of cadmium oxide nanoparticles
- Authors: Klinova S.V.1, Minigalieva I.A.1, Katsnelson B.A.1, Solovyeva S.N.1, Privalova L.I.1, Gurvich V.B.1, Ryabova I.V.1, Chernyshov I.N.1, Bushueva T.V.1, Sakhautdinova R.R.1, Shur V.Y.2, Shishkina E.V.2, Sutunkova M.P.1
-
Affiliations:
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
- Modern nanotechnologies, Ural Federal University
- Issue: Vol 99, No 12 (2020)
- Pages: 1346-1352
- Section: ENVIRONMENTAL HYGIENE
- Published: 15.12.2020
- URL: https://rjpbr.com/0016-9900/article/view/638395
- DOI: https://doi.org/10.47470/0016-9900-2020-99-12-1346-1352
- ID: 638395
Cite item
Full Text
Abstract
Introduction. Non-ferrous smelters are one of the critical nanoscale cadmium particles sources in the workplace and ambient air.
Materials and methods. The research was performed to evaluate the subchronic toxicity of cadmium oxide nanoparticles (CdO-NPs) in white outbred rats. Male outbred 3.5-month old rats received intraperitoneal injections of CdO-NPs 3 times a week for six weeks (18 in total) in doses of 0.25 mg/kg body mass. After the end of an exposure, there were rated more than 50 indices of universally accepted toxicity criteria (including biochemical and cytomorphometric). Student’s t-test was used for statistical analysis.
Results. The hematotoxic effects of CdO-NPs were revealed by a decrease in the hemoglobin content, an increase in the number of reticulocytes, eosinophils, and monocytes. CdO NPs influenced porphyrin metabolism (an increase of δ-aminolevulinic acid in the urine). Liver toxicity resulted in an increase in organ mass and a decrease in albumin content and A/G index. Besides, there was observed a rise in γ-glutamyl transpeptidase and high-density lipoproteins in the blood serum. Oxidative stress level increased (decrease in catalase action and ceruloplasmin content). Endothelin-1 decreased. It may result from an observed decrease in blood pressure indices (statistically significant for mean B.P.).
Conclusion. The intoxication of moderate severity was retrieved at the end of the subchronic exposure to cadmium oxide nanoparticles.
It characterized mass, hematological, biochemical, and cytomophometric changes. There was found mild but evident cardiovascular toxicity of cadmium oxide nanoparticles.
Keywords
About the authors
Svetlana V. Klinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Author for correspondence.
Email: klinova.svetlana@gmail.com
ORCID iD: 0000-0002-0927-4062
Researcher of Department of the Toxicology and Bioprophylaxis, Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, 620014, Russian Federation.
e-mail: klinova.svetlana@gmail.com
Russian FederationIlzira A. Minigalieva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
Russian Federation
Boris A. Katsnelson
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0001-8750-9624
Russian Federation
Svetlana N. Solovyeva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0001-8580-403X
Russian Federation
Larisa I. Privalova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1442-6737
Russian Federation
Vladimir B. Gurvich
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6475-7753
Russian Federation
Iuliia V. Ryabova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0003-2677-0479
Russian Federation
Ivan N. Chernyshov
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-2018-5386
Russian Federation
Tatiana V. Bushueva
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-5872-2001
Russian Federation
Renata R. Sakhautdinova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-2726-9259
Russian Federation
Vladimir Ya. Shur
Modern nanotechnologies, Ural Federal University
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6970-7798
Russian Federation
Ekaterina V. Shishkina
Modern nanotechnologies, Ural Federal University
Email: noemail@neicon.ru
ORCID iD: 0000-0002-2574-7472
Russian Federation
Marina P. Sutunkova
Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers
Email: noemail@neicon.ru
ORCID iD: 0000-0002-1743-7642
Russian Federation
References
- WHO. Air quality guidelines for Europe. Copenhagen; 2000: 136–8. Available at: http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf
- Sutunkova M.P., Makeev O.G., Privalova L.I., Minigalieva I.A., Gurvich V.B., Solov‘eva S.N., et al. Genotoxic effect of some elemental or element oxide nanoparticles and its diminution by bioprotectors combination. Meditsina truda i promyshlennaya ekologiya. 2018; 58(11): 10–5. https://doi.org/10.31089/1026-9428-2018-11-10-16 (in Russian)
- Peters J.L., Perlstein T.S., Perry M.J., McNeely E., Weuve J. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 2010; 110(2): 199–206. https://doi.org/10.1016/j.envres.2009.12.004
- Lee M.S., Park S.K., Hu H., Lee S. Cadmium exposure and cardiovascular disease in the 2005 Korea National Health and Nutrition Examination Survey. Environ. Res. 2011; 111(1): 171–6. https://doi.org/10.1016/j.envres.2010.10.006
- Caciari T., Sancini A., Fioravanti M., Capozzella A., Casale T., Montuori L., et al. Cadmium and hypertension in exposed workers: A meta-analysis. Int. J. Occup. Med. Environ. Health. 2013; 26(3): 440–56. https://doi.org/10.2478/s13382-013-0111-5
- Tellez-Plaza M., Jones M.R., Dominguez-Lucas A., Guallar E., Navas-Acien A. Cadmium exposure and clinical cardiovascular disease: a systematic review. Curr. Atheroscler. Rep. 2013; 15(10): 356. https://doi.org/10.1007/s11883-013-0356-2
- Myong J.P., Kim H.R., Jang T.W., Lee H.E., Koo J.W. Association between blood cadmium levels and 10-year coronary heart disease risk in the general Korean population: the Korean national health and nutrition examination survey 2008–2010. PLoS One. 2014; 9(11): e111909. https://doi.org/10.1371/journal.pone.0111909
- Borné Y., Barregard L., Persson M., Hedblad B., Fagerberg B., Engström G. Cadmium exposure and incidence of heart failure and atrial fibrillation: a population-based prospective cohort study. BMJ Open. 2015; 5(6): e007366. https://doi.org/10.1136/bmjopen-2014-007366
- Tellez-Plaza M., Guallar E., Howard B.V., Umans J.G., Francesconi Kevin A., Goessler W., et al. Cadmium exposure and incident cardiovascular disease. Epidemiol. 2013; 24(3): 421–9. https://doi.org/10.1097/EDE.0b013e31828b0631
- Larsson S.C., Wolk A. Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 2016; 45(3): 782–91. https://doi.org/10.1093/ije/dyv086
- Lebedová J., Bláhová L., Večeřa Z., Mikuška P., Dočekal B., Buchtová M., et al. Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ. Sci. Pollut. Res. Int. 2016; 23(23): 24047–60. https://doi.org/10.1007/s11356-016-7600-6
- Rana K., Verma Y., Rani V., Rana S.V.S. Renal toxicity of nanoparticles of cadmium sulphide in rat. Chemosphere. 2018; 193: 142–50. https://doi.org/10.1016/j.chemosphere.2017.11.011
- Papp A., Oszlánczi G., Horváth E., Paulik E., Kozma G., Sápi A., et al. Consequences of subacute intratracheal exposure of rats to cadmium oxide nanoparticles: Electrophysiological and toxicological effects. Toxicol. Ind. Health. 2012; 28(10): 933–41. https://doi.org/10.1177/0748233711430973
- Blum J.L., Rosenblum L.K., Grunig G., Beasley M.B., Xiong J.Q., Zelikoff J.T. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal. Toxicol. 2014; 26(1): 48–58. https://doi.org/10.3109/08958378.2013.851746
- Blum J.L., Edwards J.R., Prozialeck W.C., Xiong J.Q., Zelikoff J.T. Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. J. Toxicol. Environ. Health A. 2015; 78(12): 711–24. https://doi.org/10.1080/15287394.2015.1026622
- Blum J.L., Xiong J.Q., Hoffman C., Zelikoff J.T. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 2012; 126(2): 478–86. https://doi.org/10.1093/toxsci/kfs008
- Ladhar C., Geffroy B., Cambier S., Treguer-Delapierre M., Durand E., Brèthes D., et al. Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicol. 2014; 8(6): 676–85. https://doi.org/10.3109/17435390.2013.822116
- Ellman G., Lysko H. A precise method for the determination of whole blood and plasma sulfhydryl groups. Anal. Biochem. 1979; 93(1): 98–102. https://doi.org/10.1016/S0003-2697(79)80122-0
- Nartsissov R.P. Application of p-nitrotetrazolium violet for quantitative cytochemistry of human lymphocyte dehydrogenases. Arkhiv anatomii, gistologii i embriologii. 1969; (5): 85–91. (in Russian)
- Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P, Gurvich V.B., Shur V.Y., et al. Combined subchronic toxicity of aluminum (III), titanium (IV) and silicon (IV) oxide nanoparticles and its alleviation with a complex of bioprotectors. Int. J. Mol. Sci. 2018; 19(3): 837. https://doi.org/10.3390/ijms19030837
- Tietz N.W. Clinical Guide to Laboratory Tests. Philadelphia: W.B. Saunders Company; 1995.
- Minigalieva I.A., Katsnelson B.A., Privalova L.I., Sutunkova M.P., Gurvich V.B., Shur V.Y., et al. Attenuation of combined nickel (II) oxide and manganese (II, III) oxide nanoparticles’ adverse effects with a complex of bioprotectors. Int. J. Mol. Sci. 2015; 16(9): 22555–83. https://doi.org/10.3390/ijms160922555
- Minigalieva I.A., Katsnelson B.A., Panov V.G., Privalova L.I., Varaksin A.N., Gurvich V.B., et al. In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicol. 2017; 380: 72–93. https://doi.org/10.1016/j.tox.2017.02.007
- Krivosheev B.N., Krivosheev A.B., Poteryaeva E.L., Parulikova L.V., Mikhaylenko O.I. Clinical and biochemical syndromes of cadmium-induced acute porphyrinopathy. Terapevticheskiy arkhiv. 2010; 82(10): 65–70. (in Russian)
- Krivosheev A.B., Poteryaeva E.L., Krivosheev B.N., Kupriyanova L.Ya., Smirnova E.L. Toxic effect of cadmium on human organism (literature review). Meditsina truda i promyshlennaya ekologiya. 2012; 52(6): 35–42. (in Russian)
- Vanharen M., Girard D. Activation of human eosinophils with nanoparticles: a new area of research. Inflammation. 2020; 43(1): 8–16. https://doi.org/10.1007/s10753-019-01064-4
- Akhpolova V.O., Brin V.B. Modern concepts of kinetics and pathogenesis of heavy metal toxic effects (literature review). Vestnik novykh meditsinskikh tekhnologiy. 2020; 27(1): 55–61. https://doi.org/10.24411/1609-2163-2020-16578 (in Russian)
- Jardim-Messeder D., Caverzan A., Rauber R., de Souza Ferreira E., Margis‐Pinheiro M., Galina A. Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytol. 2015; 208(3): 776–89. https://doi.org/10.1111/nph.13515
- Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta. 2016; 1857(8): 1086–101. https://doi.org/10.1016/j.bbabio.2016.03.012
- Olisekodiaka M.J., Igbeneghu C.A., Onuegbu A.J., Oduru R., Lawal A.O. Lipid, lipoproteins, total antioxidant status and organ changes in rats administered high doses of cadmium chloride. Med. Princ. Pract. 2012; 21(2): 156–9. https://doi.org/10.1159/000333385
- Samarghandian S., Azimi-Nezhad M., Shabestari M.M., Azad F.J., Farkhondeh T., Bafandeh F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip. Toxicol. 2015; 8(3): 151–4. https://doi.org/10.1515/intox-2015-0023
- Nawrot T.S., Staessen J.A. Low-level environmental exposure to lead unmasked as silent killer. Circulation. 2006; 114(13): 1347–9. https://doi.org/10.1161/CIRCULATIONAHA.106.650440
- Potter L.R., Abbey-Hosch S., Dickey D.M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 2006; 27(1): 47–72. https://doi.org/10.1210/er.2005-0014
- Andryukhin A.N., Frolova E.V. Clinical value of the natriuretic peptides testing in patients with heart failure. Rossiyskiy semeynyy vrach. 2008; 12(4): 24–35. (in Russian)
- Ostroumova O.D., Maksimov M.L., Dralova O.V., Ermolaeva A.S. Selection of an ACE inhibitor in clinical practice. Meditsinskiy sovet. 2014; (12): 86–91. (in Russian)
- Dremina N.N., Shurygin M.G., Shurygina I.A. Endothelins under normal and pathological conditions. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2016; (10-2): 210–4. (in Russian)
- Ostrovskaya S.S. Toxic effects of cadmium. Vestnik problem biologii i meditsiny. 2014; 3(2): 33–5. (in Russian)
Supplementary files
