Safety issues in the use of disinfectants based on polyhexamethyleneguanidine (literature review)
- Authors: Lebed-Sharlevich Y.I.1, Mamonov R.A.1
-
Affiliations:
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
- Issue: Vol 102, No 9 (2023)
- Pages: 981-986
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 28.10.2023
- URL: https://rjpbr.com/0016-9900/article/view/638342
- DOI: https://doi.org/10.47470/0016-9900-2023-102-9-981-986
- EDN: https://elibrary.ru/qdkbfa
- ID: 638342
Cite item
Full Text
Abstract
The article presents data of the analysis of scientific literature on the toxicity and danger of polyhexamethylene guanidine (PHMG) and based on it disinfectants, which have been widely used for several decades. The COVID-19 pandemic has contributed to a sharp increase in the use of disinfectants, making it important to study the safety of these substances. The presented materials confirm the effectiveness of PHMG and its compounds against a wide range of bacteria, viruses and fungi. The article discusses the mechanism of the bactericidal action of guanidine polymers, based on the destruction of the bacterial cell wall due to the electrostatic effect of positively charged substance molecules on anionic groups on the cellular wall. Methods for using disinfectants based on PHMG for sanitizing various surfaces and media are shown.
The results of toxicological studies show that polyhexamethyleneguanidine compounds have low toxicity when taken orally, but pose a great danger to the respiratory system. With chronic exposure, they cause pulmonary fibrosis, a serious lung disease, associated with irreversible destruction of the lung architectonics, pulmonary insufficiency and impaired gas exchange due to excessive accumulation of proteins in the extracellular matrix. The use of disinfectants based on polyhexamethylene guanidine is not recommended for aerosol disinfection of indoor air in the presence of people. The presented data also indicate the need for additional toxicological studies to establish threshold doses of PHMG under inhalation exposure.
Contribution:
Lebed-Sharlevich Ya.I. — collection and processing of material, writing a text;
Mamonov R.A. — editing. All authors are responsible for the concept and design of the study, integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: May 19, 2023 / Accepted: September 26, 2023 / Published: October 30, 2023
About the authors
Yana I. Lebed-Sharlevich
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Author for correspondence.
Email: YaSharlevich@cspmz.ru
ORCID iD: 0000-0002-4249-1093
MD, PhD, Senior Researcher of the Centre for Strategic Planning of FMBA of Russia, Moscow, 119121, Russian Federation.
e-mail: YaSharlevich@cspmz.ru
Russian Federation
Roman A. Mamonov
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6540-6015
Russian Federation
References
- Lindenbraten A.L., Sidorenko N.V., Gololobova T.V., Shestopalova T.N. The role of standard operating procedures in quality management of medical activities. Vestnik Roszdravnadzora. 2018; (6): 40–4. https://elibrary.ru/vnjjmm (in Russian)
- Gembitskiy P.A., Vointseva I.I. Polymeric Biocidal Preparation Polyhexamethyleneguanidine [Polimernyy biotsidnyy preparat poligeksametilenguanidin]. Zaporozh’e: Poligraf; 1998. (in Russian)
- Dias F.G.G., de Freitas Pereira L., Parreira R.L.T., Veneziani R.C.S., Bianchi T.C., de Paula Fontes V.F.N., et al. Evaluation of the antiseptic and wound healing potential of polyhexamethylene guanidine hydrochloride as well as its toxic effects. Eur. J. Pharm. Sci. 2021; 160: 105739. https://doi.org/10.1016/j.ejps.2021.105739
- Ochirov O.S., Razuvaeva Ya.G., Badmaev N.S., Stel’makh S.A., Mognonov D.M. Wound-healing effect of polyguanidine-based hydrogel. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk. 2016; 1(5): 117–20. https://elibrary.ru/wxbrsn (in Russian)
- Pan Y., Xia Q., Xiao H. Cationic polymers with tailored structures for rendering polysaccharide-based materials antimicrobial: An overview. Polymers. 2019; 11(8): 1283. https://doi.org/10.3390/polym11081283
- Heydarifard S., Pan Y., Xiao H., Nazhad M.M., Shipin O. Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydr. Polym. 2017; 163: 146–52. https://doi.org/10.1016/j.carbpol.2017.01.063
- Zhang H.L., Gao Y.B., Gai J.G. Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects. J. Mater. Chem. A. 2018; 6(15): 6442–54. https://doi.org/10.1039/C8TA00342D
- Gandurina L.V., Latyshev N.S., Ivkin P.A. Jeffektivnost’ primenenija biocidnogo koaguljanta-poligeksametilenguanidin gidrohlorida v shemah ochistki prirodnyh vod. Vodoochistka. Vodopodgotovka. Vodosnabzhenie. 2012; (9): 34–7. https://elibrary.ru/pcvdgr (in Russian)
- Bogachuk G.P. Prikladnye aspekty primenenija perspektivnyh antiseptikov na osnove poligeksametilenguanidina (PGMG). Soobshhenie pervoe. Sbornik nauchnykh trudov Angarskogo gosudarstvennogo tekhnicheskogo universiteta. 2006; 2(1): 48–60. https://elibrary.ru/rdekmd (in Russian)
- Tarasevich V., Dobysh V., Karpinchik E., Agabekov V. Polymer biocides. Nauka i innovatsii. 2019; (11): 23–6. https://elibrary.ru/ltfdrh (in Russian)
- Oule M.K., Azinwi R., Bernier A.M., Kablan T., Maupertuis A.M., Mauler S., et al. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. Med. Microbiol. 2008; 57(Pt. 12): 1523–8. https://doi.org/10.1099/jmm.0.2008/003350-0
- Oule M.K., Quinn K., Dickman M., Bernier A.M., Rondeau S., De Moissac D., et al. Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. J. Med. Microbiol. 2012; 61(Pt. 10): 1421–7. https://doi.org/10.1099/jmm.0.047514-0
- Oule M.K., Staines K., Lightly T., Roberts L., Traore Y.L., Dickman M., et al. Fungicidal activity of AKWATON and in vitro assessment of its toxic effects on animal cells. J. Med. Microbiol. 2015; 64(Pt. 1): 59–66. https://doi.org/10.1099/jmm.0.079467-0
- Choi H., Kim K.J., Lee D.G. Antifungal activity of the cationic antimicrobial polymer-polyhexamethylene guanidine hydrochloride and its mode of action. Fungal. Biol. 2017; 121(1): 53–60. https://doi.org/10.1016/j.funbio.2016.09.001
- Panteleeva L.G. Virulicide activity of cationic surface-active materials and disinfection means on their base. Dezinfektsionnoe delo. 2006; (1): 34–8. https://elibrary.ru/jxrmbh (in Russian)
- Fedorova L.S., Pankratova G.P., Levchuk N.N., Chernyavskiy I.N., Efimov K.M., Dityuk A.I., et al. Desinfectants of polyguanidine with extended release and their use on practice in food industry enterprise. Dezinfektsionnoe delo. 2013; (3): 27–33. https://elibrary.ru/rapjdp (in Russian)
- Zhou Z.X., Wei D.F., Guan Y., Zheng A.N., Zhong J.J. Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J. Appl. Microbiol. 2010; 108(3): 898–907. https://doi.org/10.1111/j.1365-2672.2009.04482.x
- Shandala M.G., Fedorova L.S., Pankratova G.P., Efimov K.M., Dityuk A.I., Snezhko A.G., et al. Hygienic substantiation of the development and use of polyguanidines as antimicrobial prophylactic means of the innovative class. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2015; 94(8): 77–81. https://elibrary.ru/vjzdhj (in Russian)
- Qian L., Xiao H., Zhao G., He B. Synthesis of modified guanidine-based polymers and their antimicrobial activities revealed by AFM and CLSM. ACS Appl. Mater. Interfaces. 2011; 3(6): 1895–901. https://doi.org/10.1021/am200094u
- Brzezinska M.S., Walczak M., Jankiewicz U., Pejchalová M. Antimicrobial activity of polyhexamethylene guanidine derivatives introduced into polycaprolactone. J. Polym. Environ. 2018; 26(2): 589–95. https://doi.org/10.1007/s10924-017-0974-9
- Dorozhkin V.I., Popov N.I., Bondarenko V.O., Khod’kova Yu.S., Likhikh T.N., Shul’ga M.A. Effectiveness of disinfectant based on polyhexamethylene guanidine hydrochloride. Rossiyskiy zhurnal «Problemy veterinarnoy sanitarii, gigieny i ekologii». 2020; (1): 24–9. https://doi.org/10.36871/vet.san.hyg.ecol.202001004 https://elibrary.ru/mrtkby (in Russian)
- Efimov K.M., Grigor’ev G.A., Gembitskiy P.A., Polikarpov N.A., Alov N.V. Investigation of biopag films adsorbed on metal and ceramic surfaces by x-ray photoelectron spectroscopy. Zhurnal fizicheskoy khimii. 2006; 80(2): 360–2. https://doi.org/10.1134/S0036024406020312 https://elibrary.ru/ljpuxl
- Lifentsova M.N., Gorpinchenko E.A. Efficiency of roksatsin in aerosol disinfection of the livestock buildings. Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2016; (121): 1985–94. https://doi.org/10.21515/1990-4665-121-125 https://elibrary.ru/wwsmhd (in Russian)
- Malkov A.E. Aeron. Meditsinskaya sestra. 2014; (8): 38–9. https://elibrary.ru/syzbjr (in Russian)
- Fedorova L.S. Obosnovanie vybora dezinficirujushhih sredstv dlja profilaktiki koronavirusnoj infekcii. In: Control and Prevention of Healthcare-Associated Infections (HCAI-2020). Proceedings of the VIII Congress with International Participation [Kontrol’ i profilaktika infektsiy, svyazannykh s okazaniem meditsinskoy pomoshchi (ISMP-2020). Sbornik tezisov VIII Kongressa s mezhdunarodnym uchastiem]. Moscow; 2020. (in Russian)
- Johnston R. Antiviral and antibacterial coatings being tested on Prague trams and buses; 2020. Available at: https://www.expats.cz/czech-news/article/antiviral-and-antibacterial-coatings-being-tested-on-prague-trams-and-buses
- Deng C., Seidi F., Yong Q., Jin X., Li C., Zheng L., et al. Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. J. Adv. Res. 2022; 39: 147–56. https://doi.org/10.1016/j.jare.2021.11.002
- Tul’skaya E.A., Zholdakova Z.I., Sinitsyna O.O., Mamonov R.A. Toxicity and efficacy “Dezavid” and its analogs compared with other means of disinfection. Vodosnabzhenie i kanalizatsiya. 2013; (5-6): 44–50. https://elibrary.ru/rdkpuj (in Russian)
- Gotovskiy D.G., Petrov V.V., Shchigel’skaya E.S., Kondakova V.V. Comparative efficiency of bactericidal effects and toxicity of certain biopolymers. Veterinarnyy zhurnal Belarusi. 2021; (1): 6–10. https://elibrary.ru/mhprjj (in Russian)
- Zholdakova Z.I., Odintsov E.E., Kharchevnikova N.V., Belyaeva N.N., Tul’skaya E.A., Zaytsev N.A. Poligeksametilenguanidin gidrohdloid (PGMG-gidrohlorid). Toksikologicheskiy vestnik. 2004; (6): 35–6. https://elibrary.ru/vzlver (in Russian)
- Asiedu-Gyekye I.J., Mahmood S.A., Awortwe C., Nyarko A.K. A preliminary safety evaluation of polyhexamethylene guanidine hydrochloride. Int. J. Toxicol. 2014; 33(6): 523–31. https://doi.org/10.1177/1091581814553036
- Nadzharyan L.A., Karpinchik E.V., Tarasevich V.A., Kotelenets A.I. The study of the toxic properties of polyhexamethyleneguanidine hydrochloride and their formulation. Zdorov’e i okruzhayushchaya sreda. 2011; (19): 127–32. https://elibrary.ru/zatzkf (in Russian)
- Kondrashov V.A. Hygienic evaluation of a new polymer flocculant polyhexamethylene guanidine. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 1992; (3): 11–3. (in Russian)
- Lebedeva S.N., Ochirov O.S., Grigor’eva M.N., Zhamsaranova S.D., Stel’makh S.A., Mognonov D.M. Acute toxicity of hydrogel polyhexamethylene guanidine hydrochloride. Acta Biomedica Scientifica. 2020; 5(4): 103–7. https://doi.org/10.29413/ABS.2020-5.4.15 https://elibrary.ru/sliiqg (in Russian)
- Kim H.R., Hwang G.W., Naganuma A., Chung K.H. Adverse health effects of humidifier disinfectants in Korea: lung toxicity of polyhexamethylene guanidine phosphate. J. Toxicol. Sci. 2016; 41(6): 711–7. https://doi.org/10.2131/jts.41.711
- Park D.U., Park J., Yang K.W., Park J.H., Kwon J.H., Oh H.B. Properties of polyhexamethylene guanidine (PHMG) associated with fatal lung injury in Korea. Molecules. 2020; 25(14): 3301. https://doi.org/10.3390/molecules25143301
- Ahn J.J. The humidifier disinfectant incident and the self-examination of environmental toxicology and public health experts. Environ. Health Toxicol. 2015; 30: e2015016. https://doi.org/10.5620/eht.e2015016
- Jeon B.H., Park Y.J. Frequency of humidifier and humidifier disinfectant usage in Gyeonggi provine. Environ. Health Toxicol. 2012; 27: e2012002. https://doi.org/10.5620/eht.2012.27.e2012002
- Lee J.H., Kang H.J., Seol H.S., Kim C.K., Yoon S.K., Gwack J., et al. Refined exposure assessment for three active ingredients of humidifier disinfectants. Environ. Eng. Res. 2013; 18(4): 253–7. https://doi.org/10.4491/eer.2013.18.4.253
- Park D.U., Friesen M.C., Roh H.S., Choi Y.Y., Ahn J.J., Lim H.K., et al. Estimating retrospective exposure of household humidifier disinfectants. Indoor Air. 2015; 25(6): 631–40. https://doi.org/10.1111/ina.12180
- Song J.A., Park H.J., Yang M.J., Jung K.J., Yang H.S., Song C.W., et al. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy. Food Chem. Toxicol. 2014; 69: 267–75. https://doi.org/10.1016/j.fct.2014.04.027
- Park S., Lee K., Lee E.J., Lee S.Y., In K.H., Kim H.K., et al. Humidifier disinfectant-associated interstitial lung disease in an animal model induced by polyhexamethylene guanidine aerosol. Am. J. Respir. Crit. Care Med. 2014; 190(6): 706–8. https://doi.org/10.1164/rccm.201404-0710LE
- Kim H.R., Lee K., Park C.W., Song J.A., Shin D.Y., Park Y.J., et al. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses. Arch. Toxicol. 2016; 90(3): 617–32. https://doi.org/10.1007/s00204-015-1486-9
- Jung H.N., Zerin T., Podder B., Song H.Y., Kim Y.S. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells. Toxicol. In Vitro. 2014; 28(4): 684–92. https://doi.org/10.1016/j.tiv.2014.02.004
- Park Y.J., Jeong M.H., Bang I.J., Kim H.R., Chung K.H. Guanidine-based disinfectants, polyhexamethylene guanidine-phosphate (PHMG-P), polyhexamethylene biguanide (PHMB), and oligo (2-(2-ethoxy) ethoxyethyl guanidinium chloride (PGH) induced epithelial-mesenchymal transition in A549 alveolar epithelial cells. Inhal. Toxicol. 2019; 31(4): 161–6. https://doi.org/10.1080/08958378.2019.1624896
- Lee Y., Seo D. Toxicity of humidifier disinfectant polyhexamethylene guanidine hydrochloride by two-week whole body-inhalation exposure in rats. J. Toxicol. Pathol. 2020; 33(4): 265–77. https://doi.org/10.1293/tox.2020-0043
Supplementary files
