Genomic Analysis of Fur Color of Sable (Martes zibellina L.), Search for Mutations that Determine the Absence of Pigmentation – Albino
- 作者: Filimonov P.A.1, Manakhov A.D.1,2,3, Mitina M.I.2, Onokhov A.A.1, Chernova I.Е.4, Maksimova L.V.4, Kashtanov S.N.1, Rogaev E.I.2,3,5
-
隶属关系:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Center for Genetics and Life Science, Sirius University of Science and Technology
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University
- AO «Russian Sable» Moscow oblast, Pregion
- Department of Psychiatry, University of Massachusetts Medical School
- 期: 卷 60, 编号 11 (2024)
- 页面: 112-117
- 栏目: КРАТКИЕ СООБЩЕНИЯ
- URL: https://rjpbr.com/0016-6758/article/view/667171
- DOI: https://doi.org/10.31857/S0016675824110107
- EDN: https://elibrary.ru/waxtha
- ID: 667171
如何引用文章
详细
In the domesticated sable population, after almost 100 years of selection, individuals with colored fur began to be recorded, so, in the offspring of a pair of sables with black fur, a pastel-colored puppy was born. A single-nucleotide insertion was identified in the TYRP1 gene, which determines this sable fur color; the type of inheritance is recessive. In 2022, in this population, representatives of two sable lines gave birth to puppies with white fur at the same time. In most mammalian species, albinism is caused by mutations in the TYR gene, which encodes the enzyme tyrosinase. In the present study, the sable TYR gene was investigated as a functional candidate gene for albinism. Analysis of the nucleotide sequences coding for the TYR gene region and splicing sites did not reveal differences in white sables from standard- colored sables, suggesting that the phenotype under study is due to genetic variants in other genes.
全文:

作者简介
P. Filimonov
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: snkashtanov@mail.ru
俄罗斯联邦, Moscow, 119991
A. Manakhov
Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Genetics and Life Science, Sirius University of Science and Technology; Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University
Email: snkashtanov@mail.ru
俄罗斯联邦, Moscow, 119991; Sochi, 354340; Moscow, 119192
M. Mitina
Center for Genetics and Life Science, Sirius University of Science and Technology
Email: snkashtanov@mail.ru
俄罗斯联邦, Sochi, 354340
A. Onokhov
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: snkashtanov@mail.ru
俄罗斯联邦, Moscow, 119991
I. Chernova
AO «Russian Sable» Moscow oblast, Pregion
Email: snkashtanov@mail.ru
俄罗斯联邦, pos. Zverosovkhoz, 141214
L. Maksimova
AO «Russian Sable» Moscow oblast, Pregion
Email: snkashtanov@mail.ru
俄罗斯联邦, pos. Zverosovkhoz, 141214
S. Kashtanov
Vavilov Institute of General Genetics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: snkashtanov@mail.ru
俄罗斯联邦, Moscow, 119991
E. Rogaev
Center for Genetics and Life Science, Sirius University of Science and Technology; Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University; Department of Psychiatry, University of Massachusetts Medical School
Email: snkashtanov@mail.ru
俄罗斯联邦, Sochi, 354340; Moscow, 119192; Worcester, MA 01604, USA
参考
- Тимофеев В. В., Надеев В. Н. Соболь. М.: Заготиздат, 1955. 403 с.
- Насимович А. А. Соболь, куницы, харза. М.: Наука, 1973. 240 с.
- Каштанов С. Н. Соболь России: история, племенные и дочерние хозяйства, хронология разведения // Кролиководство и звероводство. 2014. № 6. С. 11–15.
- Бакеев Н. Н., Монахов Г. И., Синицын А. А. Соболь. 2-е изд. Вятка, 2003. 336 с.
- Гептнер В. Г., Наумов Н. П., Юргенсон П. Б. Млекопитающие Советского Союза. Т. 2. Ч. 1. М.: Высш. шк., 1967. 1004 с.
- Монахов Г. И. Географическая изменчивость и таксономическая структура соболя фауны СССР // Тр. ВНИИОЗ. 1976. Т. 26. С. 54–86.
- Монахов В.Г. Географическая изменчивость соболя в ареале и филогеография // Экология. 2015. № 3. С. 219–228. doi: 10.7868/S0367059715030075
- Каштанов С. Н., Свищёва Г. Р., Пищулина С. Л. и др. Географическая структура генофонда соболя (Martes zibellina L.): данные анализа микросателлитных локусов // Генетика. 2015. Т. 51. № 1. С. 78–88. doi: 10.7868/S001667581501004X
- Ranyuk M., Modorov M., Monakhov V., Devyatkin G. Genetic differentiation of autochthonous sable populations in Western and Eastern Siberia // J. Zool. Systematics and Evol. Research. 2021. V. 59. № 8. P. 2539–2552. https://doi.org/10.1111/jzs.12565
- Каштанов С. Н., Сулимова Г. Е., Шевырков В. Л., Свищёва Г. Р. Селекция соболя России: этапы промышленной доместикации и генетическая изменчивость // Генетика. 2016. Т. 52. № 9. С. 1001–1011.
- Свищева Г. Р., Каштанов С. Н. Репродуктивная стратегия соболя (Martes zibellina Linnaeus, 1758): анализ наследования размера приплода в промышленных популяциях // Вестн. ВОГиС. 2010. Т. 14. № 3. С. 444–451.
- Robinson R. Volume 4. Vertebrates of genetic interest // Handbook of Genetics. V. 4. Boston, MA.: Springer US, 1975. P. 367–398. https://doi.org/10.1007/978-1-4613-4470-4_18
- Trapezov O. V., Trapezova L. I. Whether or not selection can induce variability: model of the american mink (Mustela vison) // Paleontol. J. 2016. V. 50. P. 1649–1655.
- Trapezov O. V. Black crystal: А novel color mutant in the american mink (Mustela vison schreber) // J. Heredity. 1997. V. 88. № 2. P. 164–167. https://doi.org/10.1093/oxfordjournals.jhered.a023080
- Manakhov A. D., Mintseva M. Yu., Andreeva T. V. Genome analysis of sable fur color links lightened pigmentation phenotype to a frameshift variant in the tyrosinase-related protein 1 gene // Genes. 2021. V. 12. № 2. P. 157. https://doi.org/ 10.3390/genes12020157
- Blaszczyk W. M., Arning L., Hoffmann K. P., Epplen J. T. A tyrosinase missense mutation causes albinism in the wistar rat // Pigment Cell Research. 2005. V. 18 № 2. P. 144–145. https://doi.org/10.1111/j.1600-0749.2005.00227.x
- Blaszczyk W., Distler C., Dekomien G. M. et al. Identification of a tyrosinase (TYR) exon 4 deletion in albino ferrets (Mustela putorius furo) // Animal Genetics. 2007. V. 38. № 4. P. 421–423. https://doi.org/10.1111/j.1365-2052.2007.01619.x
- Yan S., Zhao D., Hu M. et al. A single base insertion in the tyrosinase gene is associated with albino phenotype in silver foxes (Vulpes vulpes) // Animal Genetics. 2019. V. 50. № 5. P. 550. doi: 10.1111/age.12816
- Anistoroaei R., Fredholm M., Christensen K., Leeb T. Albinism in the american mink (Neovison vison) is associated with a tyrosinase nonsense mutation // Animal Genetics. 2008. V. 39. № 6. P. 645–648. doi: 10.1111/j.1365-2052.2008.01788.x
- Amberger J. S., Bocchini C. A., Scott A. F., Hamosh A. Leveraging knowledge across phenotype-gene relationships // Nucl. Acids Res. 2019. V. 47. № D1. P. D1038–D1043. https://doi.org/10.1093/nar/gky1151
- Dessinioti C., Stratigos A. J., Rigopoulos D. & Katsambas A. D. A review of genetic disorders of hypopigmentation: Lessons learned from the biology of melanocytes // Experimental Dermatology. 2009. V. 18. № 9. P. 741–749.
- Baxter L. L., Watkins‐Chow D. E., Pavan W. J., Loftus S. K. A curated gene list for expanding the horizons of pigmentation biology // Pigment Cell Melanoma Res. 2019. V. 32. № 3. P. 348–358.
- Nicholas F. W., Tammen I., Sydney Informatics Hub. Online Mendelian Inheritance in Animals (OMIA). 1995 [dataset]. https://omia.org/.https://doi.org/10.25910/2AMR-PV70
- Körner A., Pawelek J. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin // Science. 1982. V. 217. № 4565. P. 1163–1165. doi: 10.1126/science.6810464
- Winkler P. A., Gornik K. R., Ramsey D. T. et al. A partial gene deletion of SLC45A2 causes oculocutaneous albinism in doberman pinscher dogs // PLoS One. 2014. V. 9. № 3. Р. e92127. doi: 10.1371/journal.pone.0092127
- Hiruni R. Wijesena, Sheila M. Schmutz. A missense mutation in SLC45A2 is associated with albinism in several small long haired dog breeds // J. Heredity. 2015. V. 106. № 3. P. 285–288. https://doi.org/10.1093/jhered/esv008
补充文件
