Genomic Analysis of Fur Color of Sable (Martes zibellina L.), Search for Mutations that Determine the Absence of Pigmentation – Albino

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the domesticated sable population, after almost 100 years of selection, individuals with colored fur began to be recorded, so, in the offspring of a pair of sables with black fur, a pastel-colored puppy was born. A single-nucleotide insertion was identified in the TYRP1 gene, which determines this sable fur color; the type of inheritance is recessive. In 2022, in this population, representatives of two sable lines gave birth to puppies with white fur at the same time. In most mammalian species, albinism is caused by mutations in the TYR gene, which encodes the enzyme tyrosinase. In the present study, the sable TYR gene was investigated as a functional candidate gene for albinism. Analysis of the nucleotide sequences coding for the TYR gene region and splicing sites did not reveal differences in white sables from standard- colored sables, suggesting that the phenotype under study is due to genetic variants in other genes.

Full Text

Restricted Access

About the authors

P. A. Filimonov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: snkashtanov@mail.ru
Russian Federation, Moscow, 119991

A. D. Manakhov

Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Genetics and Life Science, Sirius University of Science and Technology; Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University

Email: snkashtanov@mail.ru
Russian Federation, Moscow, 119991; Sochi, 354340; Moscow, 119192

M. I. Mitina

Center for Genetics and Life Science, Sirius University of Science and Technology

Email: snkashtanov@mail.ru
Russian Federation, Sochi, 354340

A. A. Onokhov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: snkashtanov@mail.ru
Russian Federation, Moscow, 119991

I. Е. Chernova

AO «Russian Sable» Moscow oblast, Pregion

Email: snkashtanov@mail.ru
Russian Federation, pos. Zverosovkhoz, 141214

L. V. Maksimova

AO «Russian Sable» Moscow oblast, Pregion

Email: snkashtanov@mail.ru
Russian Federation, pos. Zverosovkhoz, 141214

S. N. Kashtanov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: snkashtanov@mail.ru
Russian Federation, Moscow, 119991

E. I. Rogaev

Center for Genetics and Life Science, Sirius University of Science and Technology; Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University; Department of Psychiatry, University of Massachusetts Medical School

Email: snkashtanov@mail.ru
Russian Federation, Sochi, 354340; Moscow, 119192; Worcester, MA 01604, USA

References

  1. Тимофеев В. В., Надеев В. Н. Соболь. М.: Заготиздат, 1955. 403 с.
  2. Насимович А. А. Соболь, куницы, харза. М.: Наука, 1973. 240 с.
  3. Каштанов С. Н. Соболь России: история, племенные и дочерние хозяйства, хронология разведения // Кролиководство и звероводство. 2014. № 6. С. 11–15.
  4. Бакеев Н. Н., Монахов Г. И., Синицын А. А. Соболь. 2-е изд. Вятка, 2003. 336 с.
  5. Гептнер В. Г., Наумов Н. П., Юргенсон П. Б. Млекопитающие Советского Союза. Т. 2. Ч. 1. М.: Высш. шк., 1967. 1004 с.
  6. Монахов Г. И. Географическая изменчивость и таксономическая структура соболя фауны СССР // Тр. ВНИИОЗ. 1976. Т. 26. С. 54–86.
  7. Монахов В.Г. Географическая изменчивость соболя в ареале и филогеография // Экология. 2015. № 3. С. 219–228. doi: 10.7868/S0367059715030075
  8. Каштанов С. Н., Свищёва Г. Р., Пищулина С. Л. и др. Географическая структура генофонда соболя (Martes zibellina L.): данные анализа микросателлитных локусов // Генетика. 2015. Т. 51. № 1. С. 78–88. doi: 10.7868/S001667581501004X
  9. Ranyuk M., Modorov M., Monakhov V., Devyatkin G. Genetic differentiation of autochthonous sable populations in Western and Eastern Siberia // J. Zool. Systematics and Evol. Research. 2021. V. 59. № 8. P. 2539–2552. https://doi.org/10.1111/jzs.12565
  10. Каштанов С. Н., Сулимова Г. Е., Шевырков В. Л., Свищёва Г. Р. Селекция соболя России: этапы промышленной доместикации и генетическая изменчивость // Генетика. 2016. Т. 52. № 9. С. 1001–1011.
  11. Свищева Г. Р., Каштанов С. Н. Репродуктивная стратегия соболя (Martes zibellina Linnaeus, 1758): анализ наследования размера приплода в промышленных популяциях // Вестн. ВОГиС. 2010. Т. 14. № 3. С. 444–451.
  12. Robinson R. Volume 4. Vertebrates of genetic interest // Handbook of Genetics. V. 4. Boston, MA.: Springer US, 1975. P. 367–398. https://doi.org/10.1007/978-1-4613-4470-4_18
  13. Trapezov O. V., Trapezova L. I. Whether or not selection can induce variability: model of the american mink (Mustela vison) // Paleontol. J. 2016. V. 50. P. 1649–1655.
  14. Trapezov O. V. Black crystal: А novel color mutant in the american mink (Mustela vison schreber) // J. Heredity. 1997. V. 88. № 2. P. 164–167. https://doi.org/10.1093/oxfordjournals.jhered.a023080
  15. Manakhov A. D., Mintseva M. Yu., Andreeva T. V. Genome analysis of sable fur color links lightened pigmentation phenotype to a frameshift variant in the tyrosinase-related protein 1 gene // Genes. 2021. V. 12. № 2. P. 157. https://doi.org/ 10.3390/genes12020157
  16. Blaszczyk W. M., Arning L., Hoffmann K. P., Epplen J. T. A tyrosinase missense mutation causes albinism in the wistar rat // Pigment Cell Research. 2005. V. 18 № 2. P. 144–145. https://doi.org/10.1111/j.1600-0749.2005.00227.x
  17. Blaszczyk W., Distler C., Dekomien G. M. et al. Identification of a tyrosinase (TYR) exon 4 deletion in albino ferrets (Mustela putorius furo) // Animal Genetics. 2007. V. 38. № 4. P. 421–423. https://doi.org/10.1111/j.1365-2052.2007.01619.x
  18. Yan S., Zhao D., Hu M. et al. A single base insertion in the tyrosinase gene is associated with albino phenotype in silver foxes (Vulpes vulpes) // Animal Genetics. 2019. V. 50. № 5. P. 550. doi: 10.1111/age.12816
  19. Anistoroaei R., Fredholm M., Christensen K., Leeb T. Albinism in the american mink (Neovison vison) is associated with a tyrosinase nonsense mutation // Animal Genetics. 2008. V. 39. № 6. P. 645–648. doi: 10.1111/j.1365-2052.2008.01788.x
  20. Amberger J. S., Bocchini C. A., Scott A. F., Hamosh A. Leveraging knowledge across phenotype-gene relationships // Nucl. Acids Res. 2019. V. 47. № D1. P. D1038–D1043. https://doi.org/10.1093/nar/gky1151
  21. Dessinioti C., Stratigos A. J., Rigopoulos D. & Katsambas A. D. A review of genetic disorders of hypopigmentation: Lessons learned from the biology of melanocytes // Experimental Dermatology. 2009. V. 18. № 9. P. 741–749.
  22. Baxter L. L., Watkins‐Chow D. E., Pavan W. J., Loftus S. K. A curated gene list for expanding the horizons of pigmentation biology // Pigment Cell Melanoma Res. 2019. V. 32. № 3. P. 348–358.
  23. Nicholas F. W., Tammen I., Sydney Informatics Hub. Online Mendelian Inheritance in Animals (OMIA). 1995 [dataset]. https://omia.org/.https://doi.org/10.25910/2AMR-PV70
  24. Körner A., Pawelek J. Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin // Science. 1982. V. 217. № 4565. P. 1163–1165. doi: 10.1126/science.6810464
  25. Winkler P. A., Gornik K. R., Ramsey D. T. et al. A partial gene deletion of SLC45A2 causes oculocutaneous albinism in doberman pinscher dogs // PLoS One. 2014. V. 9. № 3. Р. e92127. doi: 10.1371/journal.pone.0092127
  26. Hiruni R. Wijesena, Sheila M. Schmutz. A missense mutation in SLC45A2 is associated with albinism in several small long haired dog breeds // J. Heredity. 2015. V. 106. № 3. P. 285–288. https://doi.org/10.1093/jhered/esv008

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An albino sable puppy (collection number 9706) was born at the Pushkinsky fur farm from a pair of pastel sables.

Download (296KB)
3. Fig. 2. Pedigree of albino sables, the result of crossing two lines, the founder is male 15331 (factory number). The sign "K" marks individuals brought from the Kamchatka Peninsula. Arrows mark individuals included in the study.

Download (254KB)
4. Appendix 1

Download (11MB)

Copyright (c) 2024 Russian Academy of Sciences