Изучение ассоциации VNTR полиморфизма rs58335419 гена MIR137 с риском развития шизофрении
- Авторы: Коровайцева Г.И.1, Олейчик И.В.1, Лежейко Т.В.1, Голимбет В.Е.1
-
Учреждения:
- Научный центр психического здоровья
- Выпуск: Том 60, № 2 (2024)
- Страницы: 63-69
- Раздел: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://rjpbr.com/0016-6758/article/view/666990
- DOI: https://doi.org/10.31857/S0016675824020065
- EDN: https://elibrary.ru/DQTXKJ
- ID: 666990
Цитировать
Аннотация
Ген MIR137 кодирует микроРНК-137 (miR-137), которая активно экспрессируется в различных областях головного мозга и была идентифицирована как модулятор процессов, участвующих в патогенезе нервно-психических расстройств. В регуляторной области MIR137 обнаружен функциональный полиморфизм вариабельного числа тандемных повторов (VNTR) rs58335419, связанный с изменением экспрессии miR-137 и, как следствие, с увеличением риска развития психопатологий, в том числе и шизофрении. Нами проведен анализ частоты встречаемости аллелей и генотипов VNTR MIR137 на большой выборке этнических русских российской популяции. Изучена ассоциация VNTR с риском развития шизофрении. Обнаружено, что наличие VNTR-аллелей с числом повторов более трех, а также генотипа, гомозиготного по таким аллелям, связано с увеличением риска развития шизофрении (ОШ = 1.4, 95% ДИ: 1.01–1.95).
Ключевые слова
Полный текст

Об авторах
Г. И. Коровайцева
Научный центр психического здоровья
Автор, ответственный за переписку.
Email: korovaitseva@mail.ru
Россия, Москва, 115522
И. В. Олейчик
Научный центр психического здоровья
Email: korovaitseva@mail.ru
Россия, Москва, 115522
Т. В. Лежейко
Научный центр психического здоровья
Email: korovaitseva@mail.ru
Россия, Москва, 115522
В. Е. Голимбет
Научный центр психического здоровья
Email: golimbet@mail.ru
Россия, Москва, 115522
Список литературы
- Stefansson H., Ophof R.A., Steinberg S. et al. Common variants conferring risk of schizophrenia // Nature. 2009. V. 460. № 7256. P. 744–747. https://doi.org/10.1038/nature08186
- Gejman P.V., Sanders A.R., Duan J. The role of genetics in the etiology of schizophrenia // Psychiatr. Clin. North Am. 2010. V. 33. № 1. P. 35–66. https://doi.org/10.1016/j.psc.2009.12.003
- Polderman T.J., Benyamin B., de Leeuw C.A. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies // Nat. Genet. 2015. V. 47. № 7. P. 702–709. https://doi.org/10.1038/ng.3285
- Trubetskoy V., Pardiña, A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. V.604. P. 502–508. https://doi.org/10.1038/s41586-022-04434-5
- Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. Р. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x
- Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S., Walters J.T., O’Donovan M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia // MedRxiv. 2020. https://doi.org/10.1101/2020.09.12.20192922
- Jaffe A.E., Straub R.E., Shin J.H. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis // Nat. Neurosci. 2018. V. 21. № 8. Р. 1117–1125. https://doi.org/10.1038/s41593-018-0197-y
- Takata A., Matsumoto N., Kato T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci // Nat. Commun. 2017. V. 8. P. 14519–14529. https://doi.org/10.1038/ncomms14519
- Bakhtiari M., Park J., Ding Y.C. et al. Variable number tandem repeats mediate the expression of proximal genes // Nat. Commun. 2021. V. 12. № 1. P. 2075–2099. https://doi.org/10.1038/s41467-021-22206-z
- Eslami R.M., Hernández Y., Drinan S.D. et al. Genome-wide characterization of human minisatellite VNTRs: Population-specific alleles and gene expression differences // Nucleic Acids Res. 2021. V. 49. № 8. P. 4308–4324. https://doi.org/10.1093/nar/gkab224
- Mahmoudi E., Atkins J.R., Quidé Y. et al. The MIR137 VNTR rs58335419 is associated with cognitive impairment in schizophrenia and altered cortical morphology // Schizophr. Bull. 2021. V. 47. № 2. P. 495–504. https://doi.org/10.1093/schbul/sbaa123
- Warburton A., Breen G., Rujescu D. et al. Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137 // Schizophr. Bull. 2015. V. 41. № 3. P. 698–707. ttps://doi.org/10.1093/schbul/sbu117
- Li M., Jaffe A.E., Straub R.E. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus // Nature Med. 2016. V. 22. P. 649–656.https://doi.org/10.1038/nm.4096
- Mahmoudi E., Cairns M.J. MiR-137: An important player in neural development and neoplastic transformation // Mol. Psychiatry. 2017. V. 22. № 1. P. 44–55. https://doi.org/10.1038/mp.2016.150
- Warburton A., Breen G., Bubb V.J. et al. A GWAS SNP for schizophrenia is linked to the internal MIR137 promoter and supports differential allele-specific expression // Schizophr. Bull. 2016. V. 42. № 4. P. 1003–1008. https://doi.org/10.1093/schbul/sbv144
- Pacheco A., Berger R., Freedman R., Law A.J. A VNTR regulates miR-137 expression through novel alternative splicing and contributes to risk for schizophrenia // Sci. Rep. 2019. V. 9. № 1. P. 11793–11804. https://doi.org/10.1038/s41598-019-48141-0
- O’Connor R.M., Gururajan A., DinanT.G. et al. All Roads Lead to the miRNome: miRNAs have a central role in the molecular pathophysiology of psychiatric disorders // Trends in pharmacological sciences. 2016. V. 37. № 12. P. 1029–1044. https://doi.org/10.1016/j.tips.2016.10.004
- Arakawa Y., Yokoyama K., Tasaki S. et al. Transgenic mice overexpressing miR-137 in the brain show schizophrenia-associated behavioral deficits and transcriptome profiles // PLoS One. 2019. V. 14. № 7. https://doi.org/10.1371/journal.pone.0220389
- Forero D.A., van der Ven K., Callaerts P., Del-Favero J. miRNA genes and the brain: Implications for psychiatric disorders // Hum. Mutat. 2010. V. 31. № 11. P. 1195–1204. https://doi.org/10.1002/humu.21344
- He E., Lozano M.A.G., Stringer S. et al. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission // Hum. Mol. Genet. 2018. V. 27. № 11. P. 1879–1891. https://doi.org/10.1093/hmg/ddy089
- Strazisar M., Cammaerts S., van der Ven K. et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets // Mol. Psychiatry. 2015. V. 20. № 4. P. 472–481. https://doi.org/10.1038/mp.2014.53
- Hill M.J., Donocik J.G., Nuamah R.A. et al. Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells // Schizophr. Res. 2014. V. 153. № 1-3. P. 225–230. https://doi.org/10.1016/j.schres.2014.01.034
- Siegert S., Seo J., Kwon E.J. et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity // Nat. Neurosci. 2015. V. 18. № 7. P. 1008–1016.https://doi.org/10.1038/nn.4023
- He E., Lozano M.A.G., Stringer S. et al. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission // Hum. Mol. Genet. 2018. V. 27. № 11. P. 1879–1891. https://doi.org/10.1093/hmg/ddy089
- Collins A.L., Kim Y., Bloom R.J. et al. Transcriptional targets of the schizophrenia risk gene MIR137 // Transl. Psychiatry. 2014. V. 4. № 7. e404. https://doi.org/10.1038/tp.2014.42
- Kwon E., Wang W., Tsai L.H. Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets // Mol. Psychiatry. 2013. V. 18. P. 11–12. https://doi.org/10.1038/mp.2011.170
- Kim A.H., Parker E.K., Williamson V. et al. Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137 // Schizophr. Res. 2012. V. 141. № 1. P. 60–64. https://doi.org/10.1016/j.schres.2012.06.038
- Agarwal V., Bell G.W., Nam J.-W., Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. // eLife. 2015. V. 4. e05005. https://doi.org/10.7554/eLife.05005
- Wright C., Gupta C.N., Chen J. et al. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia // Transl. Psychiatry. 2016. V. 6. № 2. e724. https://doi.org/10.1038/tp.2015.211
- Guella I., Sequeira A., Rollins B. et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex // J. Psychiatr. Res. 2013. V. 47. № 9. P. 1215–1221. https://doi.org/10.1016/j.jpsychires.2013.05.021
- Zhang Z., Yan T., Wang Y. et al. Polymorphism in schizophrenia risk gene MIR137 is associated with the posterior cingulate Cortex’s activation and functional and structural connectivity in healthy controls // Neuroimage Clin. 2018. V. 19. P. 160–166. https://doi.org/10.1016/j.nicl.2018.03.039
- Jafari P., Baghernia S., Moghanibashi M., Mohamadynejad P. Significant association of variable number tandem repeat polymorphism rs58335419 in the MIR137 gene with the risk of gastric and colon cancers // Br. J. Biomed. Sci. 2022. V. 79. P. 10095–10099. https://doi.org/10.3389/bjbs.2021.10095
- Egawa J., Nunokawa A., Shibuya M. et al. Resequencing and association analysis of MIR137 with schizophrenia in a Japanese population // Psychiatry Clin. Neurosci. 2013. V. 67. № 4. P. 277–279. https://doi.org/10.1111/pcn.12047
- Проект “1000 геномов”. http://www.internationalgenome.org
- Mamdani M., McMichael G.O., Gadepalli V. et al. Differential regulation of schizophrenia-associated microRNA gene function by variable number tandem repeats (VNTR) polymorphism // Schizophr. Res. 2013. V. 151. № 1–3. P. 284–286. https://doi.org/10.1016/j.schres.2013.10.024
- Bemis L.T., Chen R., Amato C.M, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines // Cancer Res. 2008. V. 68. P. 1362–1368. https://doi.org/10.1158/0008-5472.CAN-07-2912
- González-Giraldo Y., González-Reyes R.E., Forero D.A. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults // Psychiatry. Res. 2016. V. 236. P. 202–205. https://doi.org/10.1016/j.psychres.2016.01.006
Дополнительные файлы
