A study of association of the VNTR MIR-137 rs58335419 with schizophrenia
- Authors: Korovaitseva G.I.1, Oleichik I.V.1, Lezheiko T.V.1, Golimbet V.E.1
-
Affiliations:
- Mental Health Research Centre
- Issue: Vol 60, No 2 (2024)
- Pages: 63-69
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://rjpbr.com/0016-6758/article/view/666990
- DOI: https://doi.org/10.31857/S0016675824020065
- EDN: https://elibrary.ru/DQTXKJ
- ID: 666990
Cite item
Abstract
The MIR137 gene encodes microRNA-137 (miR-137), which is a brain-enriched miR that is highly expressed in various brain regions. miR-137 has been identified as a modulator of processes involved in the pathogenesis of neuropsychiatric disorders. Functional polymorphism of variable number of tandem repeats (VNTR) rs58335419 was found in the regulatory region of the MIR137 gene. It is associated with a change in the expression of miR-137 and, as a result, with an increased risk of developing psychopathologies, including schizophrenia. In this study, we for the first time have analyzed the distribution of frequencies of alleles and genotypes of VNTR MIR137 in a large sample from the Russian population. The association of VNTR with the risk of schizophrenia has been studied. It was found that the presence of VNTR alleles with more than three repeats, as well as a genotype homozygous for such alleles, is associated with an increased risk of developing schizophrenia (OR = 1.4, 95% CI: 1.01-1.95).
Keywords
Full Text

About the authors
G. I. Korovaitseva
Mental Health Research Centre
Author for correspondence.
Email: korovaitseva@mail.ru
Russian Federation, 115522 Moscow
I. V. Oleichik
Mental Health Research Centre
Email: korovaitseva@mail.ru
Russian Federation, 115522 Moscow
T. V. Lezheiko
Mental Health Research Centre
Email: korovaitseva@mail.ru
Russian Federation, 115522 Moscow
V. E. Golimbet
Mental Health Research Centre
Email: golimbet@mail.ru
Russian Federation, 115522 Moscow
References
- Stefansson H., Ophof R.A., Steinberg S. et al. Common variants conferring risk of schizophrenia // Nature. 2009. V. 460. № 7256. P. 744–747. https://doi.org/10.1038/nature08186
- Gejman P.V., Sanders A.R., Duan J. The role of genetics in the etiology of schizophrenia // Psychiatr. Clin. North Am. 2010. V. 33. № 1. P. 35–66. https://doi.org/10.1016/j.psc.2009.12.003
- Polderman T.J., Benyamin B., de Leeuw C.A. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies // Nat. Genet. 2015. V. 47. № 7. P. 702–709. https://doi.org/10.1038/ng.3285
- Trubetskoy V., Pardiña, A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. V.604. P. 502–508. https://doi.org/10.1038/s41586-022-04434-5
- Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. Р. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x
- Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S., Walters J.T., O’Donovan M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia // MedRxiv. 2020. https://doi.org/10.1101/2020.09.12.20192922
- Jaffe A.E., Straub R.E., Shin J.H. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis // Nat. Neurosci. 2018. V. 21. № 8. Р. 1117–1125. https://doi.org/10.1038/s41593-018-0197-y
- Takata A., Matsumoto N., Kato T. Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci // Nat. Commun. 2017. V. 8. P. 14519–14529. https://doi.org/10.1038/ncomms14519
- Bakhtiari M., Park J., Ding Y.C. et al. Variable number tandem repeats mediate the expression of proximal genes // Nat. Commun. 2021. V. 12. № 1. P. 2075–2099. https://doi.org/10.1038/s41467-021-22206-z
- Eslami R.M., Hernández Y., Drinan S.D. et al. Genome-wide characterization of human minisatellite VNTRs: Population-specific alleles and gene expression differences // Nucleic Acids Res. 2021. V. 49. № 8. P. 4308–4324. https://doi.org/10.1093/nar/gkab224
- Mahmoudi E., Atkins J.R., Quidé Y. et al. The MIR137 VNTR rs58335419 is associated with cognitive impairment in schizophrenia and altered cortical morphology // Schizophr. Bull. 2021. V. 47. № 2. P. 495–504. https://doi.org/10.1093/schbul/sbaa123
- Warburton A., Breen G., Rujescu D. et al. Characterization of a REST-regulated internal promoter in the schizophrenia genome-wide associated gene MIR137 // Schizophr. Bull. 2015. V. 41. № 3. P. 698–707. ttps://doi.org/10.1093/schbul/sbu117
- Li M., Jaffe A.E., Straub R.E. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus // Nature Med. 2016. V. 22. P. 649–656.https://doi.org/10.1038/nm.4096
- Mahmoudi E., Cairns M.J. MiR-137: An important player in neural development and neoplastic transformation // Mol. Psychiatry. 2017. V. 22. № 1. P. 44–55. https://doi.org/10.1038/mp.2016.150
- Warburton A., Breen G., Bubb V.J. et al. A GWAS SNP for schizophrenia is linked to the internal MIR137 promoter and supports differential allele-specific expression // Schizophr. Bull. 2016. V. 42. № 4. P. 1003–1008. https://doi.org/10.1093/schbul/sbv144
- Pacheco A., Berger R., Freedman R., Law A.J. A VNTR regulates miR-137 expression through novel alternative splicing and contributes to risk for schizophrenia // Sci. Rep. 2019. V. 9. № 1. P. 11793–11804. https://doi.org/10.1038/s41598-019-48141-0
- O’Connor R.M., Gururajan A., DinanT.G. et al. All Roads Lead to the miRNome: miRNAs have a central role in the molecular pathophysiology of psychiatric disorders // Trends in pharmacological sciences. 2016. V. 37. № 12. P. 1029–1044. https://doi.org/10.1016/j.tips.2016.10.004
- Arakawa Y., Yokoyama K., Tasaki S. et al. Transgenic mice overexpressing miR-137 in the brain show schizophrenia-associated behavioral deficits and transcriptome profiles // PLoS One. 2019. V. 14. № 7. https://doi.org/10.1371/journal.pone.0220389
- Forero D.A., van der Ven K., Callaerts P., Del-Favero J. miRNA genes and the brain: Implications for psychiatric disorders // Hum. Mutat. 2010. V. 31. № 11. P. 1195–1204. https://doi.org/10.1002/humu.21344
- He E., Lozano M.A.G., Stringer S. et al. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission // Hum. Mol. Genet. 2018. V. 27. № 11. P. 1879–1891. https://doi.org/10.1093/hmg/ddy089
- Strazisar M., Cammaerts S., van der Ven K. et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets // Mol. Psychiatry. 2015. V. 20. № 4. P. 472–481. https://doi.org/10.1038/mp.2014.53
- Hill M.J., Donocik J.G., Nuamah R.A. et al. Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells // Schizophr. Res. 2014. V. 153. № 1-3. P. 225–230. https://doi.org/10.1016/j.schres.2014.01.034
- Siegert S., Seo J., Kwon E.J. et al. The schizophrenia risk gene product miR-137 alters presynaptic plasticity // Nat. Neurosci. 2015. V. 18. № 7. P. 1008–1016.https://doi.org/10.1038/nn.4023
- He E., Lozano M.A.G., Stringer S. et al. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission // Hum. Mol. Genet. 2018. V. 27. № 11. P. 1879–1891. https://doi.org/10.1093/hmg/ddy089
- Collins A.L., Kim Y., Bloom R.J. et al. Transcriptional targets of the schizophrenia risk gene MIR137 // Transl. Psychiatry. 2014. V. 4. № 7. e404. https://doi.org/10.1038/tp.2014.42
- Kwon E., Wang W., Tsai L.H. Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets // Mol. Psychiatry. 2013. V. 18. P. 11–12. https://doi.org/10.1038/mp.2011.170
- Kim A.H., Parker E.K., Williamson V. et al. Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137 // Schizophr. Res. 2012. V. 141. № 1. P. 60–64. https://doi.org/10.1016/j.schres.2012.06.038
- Agarwal V., Bell G.W., Nam J.-W., Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. // eLife. 2015. V. 4. e05005. https://doi.org/10.7554/eLife.05005
- Wright C., Gupta C.N., Chen J. et al. Polymorphisms in MIR137HG and microRNA-137-regulated genes influence gray matter structure in schizophrenia // Transl. Psychiatry. 2016. V. 6. № 2. e724. https://doi.org/10.1038/tp.2015.211
- Guella I., Sequeira A., Rollins B. et al. Analysis of miR-137 expression and rs1625579 in dorsolateral prefrontal cortex // J. Psychiatr. Res. 2013. V. 47. № 9. P. 1215–1221. https://doi.org/10.1016/j.jpsychires.2013.05.021
- Zhang Z., Yan T., Wang Y. et al. Polymorphism in schizophrenia risk gene MIR137 is associated with the posterior cingulate Cortex’s activation and functional and structural connectivity in healthy controls // Neuroimage Clin. 2018. V. 19. P. 160–166. https://doi.org/10.1016/j.nicl.2018.03.039
- Jafari P., Baghernia S., Moghanibashi M., Mohamadynejad P. Significant association of variable number tandem repeat polymorphism rs58335419 in the MIR137 gene with the risk of gastric and colon cancers // Br. J. Biomed. Sci. 2022. V. 79. P. 10095–10099. https://doi.org/10.3389/bjbs.2021.10095
- Egawa J., Nunokawa A., Shibuya M. et al. Resequencing and association analysis of MIR137 with schizophrenia in a Japanese population // Psychiatry Clin. Neurosci. 2013. V. 67. № 4. P. 277–279. https://doi.org/10.1111/pcn.12047
- Проект “1000 геномов”. http://www.internationalgenome.org
- Mamdani M., McMichael G.O., Gadepalli V. et al. Differential regulation of schizophrenia-associated microRNA gene function by variable number tandem repeats (VNTR) polymorphism // Schizophr. Res. 2013. V. 151. № 1–3. P. 284–286. https://doi.org/10.1016/j.schres.2013.10.024
- Bemis L.T., Chen R., Amato C.M, et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines // Cancer Res. 2008. V. 68. P. 1362–1368. https://doi.org/10.1158/0008-5472.CAN-07-2912
- González-Giraldo Y., González-Reyes R.E., Forero D.A. A functional variant in MIR137, a candidate gene for schizophrenia, affects Stroop test performance in young adults // Psychiatry. Res. 2016. V. 236. P. 202–205. https://doi.org/10.1016/j.psychres.2016.01.006
Supplementary files
