Study of the role of genes involved in the metabolism of histamine in the development of allergic respiratory diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of genetic, epigenetic and environmental factors underlies the pathogenesis of allergic diseases. Allergic rhinitis and atopic bronchial asthma are closely related and often concurrent respiratory allergic diseases. The chronic recurrent course of these diseases establishes the importance of further and more profound studies of the mechanisms underlying the development of these pathologies. Histamine is one of the most significant inflammatory mediators secreted during allergic reactions. The aim of the research was to study the role of polymorphic variants of AOC1, HRH2, HRH3, ALDH7A1, ADCYAP1, HNMT, PSAP, SCG3, genes involved in the histamine metabolism in the development of different endophenotypes of the allergic airway diseases in individuals living in the Republic of Bashkortostan. DNA samples of 358 individuals with allergic diseases of the respiratory tract of different ethnicity (Russians – 165, Tatars – 143, Bashkirs – 50) and 200 controls with unweighted heredity in allergic diseases (Russians – 75, Tatars – 83, Bashkirs – 42). Genotyping of polymorphic variants was performed by real-time PCR and PCR-RFLP analysis. It was revealed that the rs104979793*CC genotype and the rs104979793*C allele of the AOC1 gene were associated with allergic diseases of the respiratory tract and asthma with concomitant allergic rhinitis in Russians. A significant increase of total IgE level was revealed in Russian patients with allergic diseases of the respiratory tract with the rs1049793*CC genotype of the AOC1 gene compared to carriers of the rs1049793*CG and rs1049793*GG genotypes. The association of the C allele of the rs17525472 polymorphic variant localized near the SCG3 gene with allergic rhinitis in Russians was established. The results revealed that AOC1 and SCG3 genes involved in the metabolism of histamine are related to the development of different endophenotypes of airway diseases in children.

Full Text

Restricted Access

About the authors

O. N. Savelieva

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology; Saint-Petersburg State University

Author for correspondence.
Email: olyasavelie@yandex.ru
Russian Federation, Ufa, 450054; Ufa, 450076; Saint-Petersburg, 199034

A. S. Karunas

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State Medical University; Saint-Petersburg State University

Email: carunas@list.ru
Russian Federation, Ufa, 450054; Ufa, 450008; Saint-Petersburg, 199034

A. R. Biktasheva

Bashkir State Medical University

Email: olyasavelie@yandex.ru
Russian Federation, Ufa, 450008

A. O. Vlasova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: olyasavelie@yandex.ru
Russian Federation, Ufa, 450054

I. M. Khidiyatova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology; Saint-Petersburg State University

Email: olyasavelie@yandex.ru
Russian Federation, Ufa, 450054; Ufa, 450076; Saint-Petersburg, 199034

E. I. Etkina

Bashkir State Medical University

Email: olyasavelie@yandex.ru
Russian Federation, Ufa, 450000

E. K. Khusnutdinova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology; Saint-Petersburg State University

Email: olyasavelie@yandex.ru
Russian Federation, Ufa, 450054; Ufa, 450076; Saint-Petersburg, 199034

References

  1. Рузикулов А. Клинико-аллергологические особенности и распространение аллергического ринита и бронхиальной астмы // Евраз. журн. медицинских и естественных наук. 2022. Т. 2. № 11. С. 87–96.
  2. Gautam Y., Johansson E., Mersha T.B. Multi-omics profiling approach to asthma: An evolving paradigm // J. Pers. Med. 2022. V. 12(1). P. 66. https://doi.org/10.3390/jpm12010066
  3. Zhang Y., Huang Y., Chen W. et al. Identification of key genes in allergic rhinitis by bioinformatics analysis // J. Intern. Med. Resh. 2021. V. 49(7). P. 1–14. https://doi.org/10.1177/03000605211029521
  4. Астафьева Н.Г., Баранов А.А., Вишнева Е.А. и др. Аллергический ринит // Клинические рекомендации. 2020. Т. 28. № 4. С. 246–256. https://doi.org/10.17116/rosrino202028041246
  5. Choi B.Y., Han M., Kwak J. W., Kim T.H. Genetics and epigenetics in allergic rhinitis // Genes. 2021. V. 12. https://doi.org/10.3390/genes12122004
  6. Bousquet J., Anto J. M., Bachert C. et al. Allergic rhinitis // Nat. Rev. 2020. V. 6 (95). P. 1–17. https://doi.org/10.1038/s41572-020-00227-0
  7. Thangam E.B., Jemima E.A., Singh H. et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.01873
  8. Anvari S., Vyhlidal C. A., Dai H. et al. Genetic variation along the histamine pathway in children with allergic versus nonallergic asthma // Am. J. Respir. Cell Mol. Biol. 2015. V. 53(6). P. 802–809. https://doi.org/10.1165/rcmb.2014-0493OC
  9. Meza-Velázquez R., López-Márquez F., Espinosa-Padilla S. et al. Association between two polymorphisms of histamine-metabolising enzymes and the severity of allergic rhinitis in a group of Mexican children // Allergol. Immunopathol. (Madr.). 2016. V. 44(5). P. 433–438. https://doi.org/10.1016/j.aller.2016.01.002
  10. Кучер А.Н., Черевко Н.А. Гены гистаминового метаболического пути и многофакторные заболевания человека // Генетика. 2018. Т. 54. № 1. С. 15–32. https://doi.org/10.7868/S0016675818010083.
  11. Савельева О.Н., Карунас А.С., Федорова Ю.Ю. и др. Анализ ассоциаций полиморфных вариантов генов гистаминовых рецепторов (HRH1, HRH2, HRH3, HRH4) с развитием бронхиальной астмы у детей // Пульмонология. 2021. № 31(6). С. 729–738. https://doi.org/10.18093/0869-0189-2021-31-6-729-738
  12. Савельева О.Н., Карунас А.С., Федорова Ю.Ю. и др. Анализ ассоциаций полиморфных вариантов генов ALDH7A1, AOC1, PSAP, ADCYAP1, участвующих в метаболизме гистамина, с развитием бронхиальной астмы у индивидов из Республики Башкортостан // Якутский мед. жур. 2023. №1 (81). С. 10–13. https://doi.org/10.25789/YMJ.2023.81.02
  13. Савельева О.Н., Карунас А.С., Федорова Ю.Ю. и др. Анализ ассоциаций полиморфных вариантов генов аминоксидазы 1 AOC1 и гистамин-N-метилтрансферазы HNMT с развитием бронхиальной астмы у детей // Якутский мед. жур. 2020. №4 (72). С. 20–23. https://doi.org/10.25789/YMJ.2020.72.05
  14. García-Martín E., García-Menaya J., Sánchez B. et al. Polymorphisms of histamine-metabolizing enzymes and clinical manifestations of asthma and allergic rhinitis // Clin. Exp. Allergy. 2007. V. 37(8). P. 1175–1182. https://doi.org/10.1111/j.1365-2222.2007.02769.x
  15. Refaat M.M., Abdel-Rehim A.S., Elmahdi A.R. et al. Diamine oxidase enzyme: A novel biomarker in respiratory allergy // International Forum of Allergy & Rhinology. 2019. V. 9 (12). https://doi.org/10.1002/alr.22426
  16. Mayo-Yáñez M., Díaz-Díaz A., Vázquez-Barro J.C. et al. Relationship between allergic rhinitis and diamine oxidase activity: A preliminary report // Allergol. Select. 2021. V.5. P. 187–194. https://doi.org/10.5414/ALS400537
  17. Chiba Y., Ueda C., Kohno N. et al. Attenuation of relaxing response induced by pituitary adenylate cyclase-activating polypeptide in bronchial smooth muscle of experimental asthma // Am. J. Physiol. Lung Cell Mol. Physiol. 2020. V. 319(5). P. L786–L793. https://doi.org/10.1152/ajplung.00315.2020
  18. Mihalj H., Butković J., Tokić S. et al. Expression of oxidative stress and inflammation-related genes in nasal mucosa and nasal polyps from patients with chronic rhinosinusitis. Int. J. Mol. Sci. 2022. V. 23(10). P. 5521. https://doi.org/10.3390/ijms23105521
  19. Fernández-Novoa L., Corzo L., Seoane S. & Cacabelos R.A. Genomic approach to histamine function // J. Genomic Med. Pharmacogenomics. 2017. V. 1(2). P. 233–241.
  20. Szczepankiewicz A., Breborowicz A., Sobkowiak P., Popiel А. Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case control study // Clin. Mol. Allergy. 2010. V. 8. https://doi.org/10.1186/1476-7961-8-14
  21. Li X., Howard T.D., Zheng S.L. et al. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions // J. Allergy Clin. Immunol. 2010. V. 125(2). P. 328–335. https://doi.org/10.1016/j.jaci.2009.11.018

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences