Rare Forms of Vitamin D-Binding Protein (DBP): an Analytical Literature Review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents an analysis of the literature data on the structure and functions of vitamin D-binding protein (DBP), which is controlled by a single gene with three clearly defined alleles Gc1-F, Gc1-S, and Gc2. The article presents information on various structural and functional variants of DBP, which are determined genetically and can undergo post-translational modification by glycosylation. One of the derivatives of DBP is its partially deglycosylated form, which exhibits properties of a specific activator of macrophages and is designated as the GcMAF factor. The article pays special attention to rare forms of DBP, detected by the isofocusing method. An assumption is made about the nature of rare forms of DBP and the mechanism of occurrence of changes underlying the appearance of these forms.

Full Text

Restricted Access

About the authors

E. V. Levites

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: levites@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090

S. S. Kirikovich

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: levites@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090

A. S. Proskurina

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: levites@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090

N. A. Ivanov

Novosibirsk State University

Email: levites@bionet.nsc.ru
Russian Federation, Novosibirsk, 630090

Yu. S. Snegireva

ITMO National Research University

Email: levites@bionet.nsc.ru
Russian Federation, Saint Petersburg, 191002

S. S. Bogachev

Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: labmolbiol@mail.ru
Russian Federation, Novosibirsk, 630090

References

  1. Schoentgen F., Metz-Boutique M.H., Jollès J. et al. Complete amino acid aequence of human vitamin D-binding protein (group-specific component): Evidence of a three-fold internal homology as in serum albumin and alpha-fetoprotein // Biochim. Biophys. Acta. 1986. V. 871. № 2. P. 189–198. https://doi.org/10.1016/0167-4838(86)90173-1
  2. Bouillon R., Schuit F., Antonio L., Rastinejad F. Vitamin D binding protein: А historic overview // Front. Endocrinol. (Lausanne). 2020. V. 10. https://doi.org/10.3389/FENDO.2019.00910
  3. Albracht S.P. Immunotherapy with GcMAF revisited – a critical overview of the research of Nobuto Yamamoto // Cancer Treat. Res. Commun. 2022. V. 31. https://doi.org/10.1016/j.ctarc.2022.100537
  4. Verboven C., Rabijns A., De Maeyer M. et al. A structural basis for the unique binding features of the human vitamin D-binding protein // Nat. Struct. Biol. 2002. V. 9. P. 131–136. https://doi.org/10.1038/NSB754
  5. Nagasawa H., Uto Y., Sasaki H. et al. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity // Anticancer Res. 2005. V. 25. P. 3689–3695.
  6. Petrini M., Galbraith R.M., Werner P.A.M. et al. Vitamin D binding protein binds to cytoplasm of all human lymphocytes and is expressed on b-cell membranes // Clin. Immunol. Immunopathol. 1984. V. 31. P. 282–295.
  7. Petrini M., Allegrini A., Ambrogi F. et al. Binding of GC (VDBP) to membranes of human b lymphocytes following stripping of extant protein // J. Endocrinol. Invest. 1995. V. 18. P. 630–637. https://doi.org/10.1007/BF03349781
  8. Imawari M., Kida K., Goodman D.S. The transport of vitamin D and its 25-hydroxy metabolite in human plasma. Isolation and partial characterization of vitamin D and 25-hydroxyvitamin D binding protein // J. Clin. Invest. 1976. V. 58. P. 514–523. https://doi.org/10.1172/JCI108495
  9. Van Baelen H., Bouillon R., De Moor P. Binding of 25-hydroxycholecalciferol in tissues // J. Biol. Chem. 1977. V. 252. P. 2515–2518. https://doi.org/10.1016/S0021-9258(17)40488-1
  10. Van Baelen H., Bouillon R., De Moor P. Vitamin D-binding protein (Gc-globulin) binds actin // J. Biol. Chem. 1980. V. 255. P. 2270–2272. https://doi.org/10.1016/S0021-9258(19)85885-4
  11. Haddad J.G., Kowalski M.A., Sanger J.W. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins) // Biochem. J. 1984. V. 218. P. 805–810. https://doi.org/10.1042/BJ2180805
  12. Williams M.H., Van Alstyne E.L., Galbraith R.M. Evidence of a novel association of unsaturated fatty acids with Gc (vitamin D-binding protein) // Biochem. Biophys. Res. Commun. 1988. V. 153. P. 1019–1024. https://doi.org/10.1016/S0006-291X(88)81330-5
  13. Link R.P., Perlman K.L., Pierce E.A. et al. Purification of human serum vitamin D-binding protein by 25-hydroxyvitamin D3-sepharose chromatography // Anal. Biochem. 1986. V. 157. P. 262–269. https://doi.org/10.1016/0003-2697(86)90624-X
  14. Левитес Е.В., Кирикович С.С., Долгова Е.В. и др. Оценка in vitro биологической активности отечественного препарата макрофаг-активирующего фактора (GcMAF-RF) // Вавил. журнал генетики и селекции. 2020. № 3. C. 284–291. https://doi.org/10.18699/VJ20.621
  15. Kirikovich S.S., Levites E.V., Proskurina A.S. et al. The molecular aspects of functional activity of macrophage-activating factor GcMAF // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/IJMS242417396
  16. Yang F., Brune J.L., Naylor S.L. et al. Human group-specific component (Gc) is a member of the albumin family // Proc. Natl Acad. Sci. 1985. V. 82. P. 7994–7998. https://doi.org/10.1073/PNAS.82.23.7994
  17. Cooke N.E., David E.V. Serum vitamin D-binding protein is a third member of the albumin and alpha fetoprotein gene family // J. Clin. Invest. 1985. V. 76. P. 2420–2424. https://doi.org/10.1172/JCI112256
  18. Braun A., Bichlmaier R., Cleve H. Molecular analysis of the gene for the human vitamin-D-binding protein (group-specific component): Аllelic differences of the common genetic GC types // Hum. Genet. 1992. V. 89. P. 401–406. https://doi.org/10.1007/BF00194311
  19. Viau M., Constans J., Debray H., Montreuil J. Isolation and characterization of the O-glycan chain of the human vitamin-D binding protein // Biochem. Biophys. Res. Commun. 1983. V. 117. P. 324–331. https://doi.org/10.1016/0006-291X(83)91579-6
  20. Ravnsborg T., Olsen D.T., Thysen A.H. et al. The glycosylation and characterization of the candidate Gc macrophage activating factor // Biochim. Biophys. Acta – Proteins Proteomics. 2010. V. 1804. P. 909–917. https://doi.org/10.1016/J.BBAPAP.2009.12.022
  21. Kanie Y., Maegawa Y., Wei Y., Kanie O. Investigation of the protective effect for GcMAF by a glycosidase inhibitor and the glycan structure of Gc protein // Molecules. 2023. V. 28. https://doi.org/10.3390/MOLECULES28041570/S1
  22. Borges C.R., Rehder D.S. Glycan structure of Gc protein-derived macrophage activating factor as revealed by mass spectrometry // Arch. Biochem. Biophys. 2016. V. 606. P. 167–179. https://doi.org/10.1016/J.ABB.2016.08.006
  23. Yamamoto N., Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells // J. Immunol. 1993. V. 151. P. 2794–2802. https://doi.org/10.4049/jimmunol.151.5.2794
  24. Malik S., Fu L., Juras D.J. et al. Common variants of the vitamin D binding protein gene and adverse health outcomes // Crit. Rev. Clin. Lab. Sci. 2013. V. 50. P. 1–22. https://doi.org/10.3109/10408363.2012.750262
  25. Bouillon R., Van Baelen H., De Moor P. The measurement of the vitamin D-binding protein in human serum // J. Clin. Endocrinol. Metab. 1977. V. 45. P. 225–231. https://doi.org/10.1210/JCEM-45-2-225
  26. Pawlik T.M., Hawke D.H., Liu Y. et al. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein // BMC Cancer. 2006. V. 6. https://doi.org/10.1186/1471-2407-6-68
  27. Zhang J., Sokal I., Peskind E.R. et al. CSF Multianalyte profile distinguishes alzheimer and parkinson diseases // Am. J. Clin. Pathol. 2008. V. 129. P. 526–529. https://doi.org/10.1309/W01Y0B808EMEH12L
  28. Anagnostopoulos A.K., Kolialexi A., Mavrou A. et al. Proteomic analysis of amniotic fluid in pregnancies with klinefelter syndrome foetuses // J. Proteomics. 2010. V. 73. P. 943–950. https://doi.org/10.1016/J.JPROT.2009.12.009
  29. Lauridsen A.L., Vestergaard P., Nexo E. Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women // Clin. Chem. 2001. V. 47. P. 753–756. https://doi.org/10.1093/CLINCHEM/47.4.753
  30. Kamboh M.I., Ferrell R.E. Ethnic variation in vitamin D-binding protein (GC): А review of isoelectric focusing studies in human populations // Hum. Genet. 1986. V. 72. P. 281–293. https://doi.org/10.1007/BF00290950/METRICS
  31. Малярчук Б.А. Полиморфизм гена Gc, кодирующего витамин D-связывающий белок, у коренного населения Сибири // Экол. генетика. 2020. Т. 18. С. 243–250. https://doi.org/10.17816/ECOGEN18634
  32. Ito I., Nagai S., Hoshino Y. et al. Risk and severity of COPD is associated with the group-specific component of serum globulin 1F allele // Chest. 2004. V. 125. P. 63–70. https://doi.org/10.1378/CHEST.125.1.63
  33. Schellenberg D., Paré P.D., Weir T.D. et al. 25-hydroxyvitamin D binding protein variants and the risk of COPD // Am. J. Respir. Crit. Care Med. 1998. V. 157. P. 957–961.
  34. Yamamoto N., Homma S. Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes // Proc. Natl Acad. Sci. USA. 1991. V. 88. P. 8539–8543. https://doi.org/10.1073/PNAS.88.19.8539
  35. Yamamoto N., Naraparaju V.R., Asbell S.O. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients1 // Cancer Res. 1996. V. 56. P. 2827–2831.
  36. Rehder D.S., Nelson R.W., Borges C.R. Glycosylation status of vitamin D binding protein in cancer patients // Protein Sci. 2009. V. 18. P. 2036–2042. https://doi.org/10.1002/PRO.214
  37. Kirikovich S.S., Levites E.V., Proskurina A.S. et al. Production of GcMAF with anti-inflammatory properties and its effect on models of induced arthritis in mice and cystitis in rats // Curr. Is. Mol. Biol. 2024. V. 46. P. 10934–10959. https://doi.org/10.3390/CIMB46100650
  38. Constans J., Cleve H. Group-specific component. Report on the first international workshop // Hum. Genet. 1979. V. 48. P. 143–149. https://doi.org/10.1007/BF00286897
  39. Borges C.R., Rehder D.S., Jarvis J.W. et al. Full-length characterization of proteins in human populations // Clin. Chem. 2010. V. 56. P. 202–211. https://doi.org/10.1373/CLINCHEM.2009.134858
  40. Goodman M.M., Stuber C.W., Lee C.N., Johnson F.M. Genetic control of malate dehydrogenase isozymes in maize // Genetics. 1980. V. 94. P. 153–168. https://doi.org/10.1093/GENETICS/94.1.153
  41. Ruggiero M. Gc protein-derived macrophage activating factor (GcMAF) and autism: Do clinical results require a novel interpretation? // Am. J. Immunol. 2016. V. 12. P. 77–82. https://doi.org/10.3844/AJISP.2016.77.82
  42. Ugarte A., Bouche G., Meheus L. Inconsistencies and questionable reliability of the publication “immunotherapy of metastatic colorectal cancer with vitamin D-binding protein-derived macrophages-activating, GcMAF” by Yamamoto et al. // Cancer Immunol. Immunother. 2014. V. 63. P. 1347–1348. https://doi.org/10.1007/S00262-014-1587-Y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Western blot analysis of DBP samples obtained by chromatography through Sepharose (with 25-OH vitamin D3) (1) and actin (2) columns [14]. M - molecular marker (Thermo Fisher Scientific Inc., USA).

Download (92KB)

Copyright (c) 2025 Russian Academy of Sciences