Similarity of Human Mitochondrial DNA Nucleotide Substitution Spectra Reconstructed Over One and Many Generations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using phylogenetic analysis of mitochondrial whole genome nucleotide sequences (mtDNA), allowing the study of genetic changes over many generations, a spectrum of nucleotide substitutions (along the L-strand of mtDNA) was reconstructed in European populations. The spectra of mtDNA nucleotide substitutions observed in a heteroplasmic state (at ≥1% and ≥5% levels) in first generation children were also analyzed. It was found that the spectra of nucleotide substitutions reconstructed over one and many generations do not differ practically in the main parameters: the distribution of pyrimidine and purine substitutions (with predominance of transitions T>C), the ratio of the number of transitions and transversions. Analysis of the phylogenetic tree of mtDNA haplotypes in Europeans clearly revealed the influence of negative (purifying) selection on mitochondrial gene pools. It is suggested that the selective processes guiding the mtDNA evolution in one and many generations are of a similar nature, i.e., caused by negative selection. The problem of how mutations occur and spread in mitochondria of germ line cells is discussed.

Texto integral

Acesso é fechado

Sobre autores

B. Malyarchuk

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: malyarchuk@ibpn.ru
Rússia, Magadan, 685000

Bibliografia

  1. Giles R.E., Blanc H., Cann H.M., Wallace D.C. Maternal inheritance of human mitochondrial DNA // Proc. Natl. Acad. Sci. USA. 1980. V. 77. P. 6715–6719. https://doi.org/10.1073/pnas.77.11.6715
  2. Case J.T., Wallace D.C. Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts // Somat. Cell Genet. 1981. V. 7. P. 103–108. https://doi.org/10.1007/BF01544751
  3. Howell N., Kubacka I., Mackey D.A. How rapidly does the human mitochondrial genome evolve? // Am. J. Hum. Genet. 1996. V. 59. P. 501–509.
  4. Lightowlers R.N., Chinnery P.F., Turnbull D.M., Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease // Trends Genet. 1997. V. 13. P. 450–455. https://doi.org/10.1016/s0168-9525(97)01266-3
  5. Just R.S., Irwin J.A., Parson W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing // Forensic Sci. Int. Genet. 2015. V. 18. P. 131–139. https://doi.org/10.1016/j.fsigen.2015.05.003
  6. Skonieczna K., Malyarchuk B., Jawień A. et al. Heteroplasmic substitutions in the entire mitochondrial genomes of human colon cells detected by ultra-deep 454 sequencing // Forensic Sci. Int. Genet. 2015. V. 15. P. 16–20. https://doi.org/10.1016/j.fsigen.2014.10.021
  7. Wei W., Tuna S., Keogh M.J. et al. Germline selection shapes human mitochondrial DNA diversity // Science. 2019. V. 364. https://doi.org/10.1126/science.aau6520
  8. Taylor C.R., Kiesler K.M., Sturk-Andreaggi K. et al. Platinum-quality mitogenome haplotypes from United States populations // Genes. 2020. V. 11. https://doi.org/10.3390/genes11111290
  9. Shoubridge E.A., Wai T. Mitochondrial DNA and the mammalian oocyte // Curr. Topics in Developmental Biol. 2007. V. 77. P. 87–111. https://doi.org/10.1016/S0070-2153(06)77004-1
  10. Floros V.I., Pyle A., Dietmann S. et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos // Nat. Cell. Biol. 2018. V. 20. P. 144–151. https://doi.org/10.1038/s41556-017-0017-8
  11. Wallace D.C., Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease // Cold Spring Harb. Perspect. Biol. 2013. V. 5. https://doi.org/10.1101/cshperspect.a021220
  12. Малярчук Б.А. Сравнительный анализ мутационных спектров митохондриальных геномов в популяциях человека // Мол. биология. 2023. Т. 57. № 5. С. 792–796. https://doi.org/10.31857/S0026898423050117
  13. Малярчук Б.А. Характеристика спектра нуклеотидных замен митохондриальной ДНК в популяциях человека в условиях высокогорья // Генетика. 2023. Т. 59. № 11. C. 1313–1318. https://doi.org/10.31857/S0016675823110085
  14. Mikhailova A.G., Mikhailova A.A., Ushakova K. et al. A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand // Nucl. Ac. Res. 2022. V. 50. P. 10264–10277. https://doi.org/10.1093/nar/gkac779
  15. Turro E., Astle W.J., Megy K. et al. Whole-genome sequencing of patients with rare diseases in a national health system // Nature. 2020. V. 583. P. 96–102. https://doi.org/10.1038/s41586-020-2434-2
  16. Elson J.L., Turnbull D.M., Howell N. Comparative genomics and the evolution of human mitochondrial DNA: Assessing the effects of selection // Am. J. Hum. Genet. 2004. V. 74. P. 229–238. https://doi.org/10.1086/381505
  17. Li M., Schroeder R., Ko A., Stoneking M. Fidelity of capture-enrichment for mtDNA genome sequencing: Influence of NUMTs // Nucl. Ac. Res. 2012. V. 40. P. e137. https://doi.org/10.1093/nar/gks499
  18. Moilanen J.S., Majamaa K. Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA // Mol. Biol. Evol. 2003. V. 20. P. 1195–1210. https://doi.org/10.1093/molbev/msg121
  19. Kivisild T., Shen P., Wall D.P. et al. The role of selection in the evolution of human mitochondrial genomes // Genetics. 2006. V. 172. P. 373–387. https://doi.org/10.1534/genetics.105.043901
  20. Деренко М.В., Малярчук Б.А. Молекулярная филогеография населения Северной Евразии по данным об изменчивости митохондриальной ДНК. Магадан: СВНЦ ДВО РАН, 2010. 376 с.
  21. Малярчук Б.А. Анализ распределения нуклеотидных замен в генах митохондриальной ДНК человека // Генетика. 2005. Т. 41. № 1. С. 93–99.
  22. Galtier N., Enard D., Radondy Y. et al. Mutation hot spots in mammalian mitochondrial DNA // Genome Res. 2006. V. 16. P. 215–222. https://doi.org/10.1101/gr.4305906
  23. Ельцов Н.П., Володько Н.В., Стариковская Е.Б. и др. Роль естественного отбора в эволюции митохондриальных гаплогрупп Северо-Восточной Евразии // Генетика. 2010. Т. 46. № 9. С. 1247–1249.
  24. Литвинов А.Н., Малярчук Б.А., Деренко М.В. Характер молекулярной эволюции митохондриальных геномов русского населения Восточной Европы // Вестник СВНЦ ДВО РАН. 2020. № 2. С. 107–113. https://doi.org/10.34078/1814-0998-2020-2-107-113
  25. Cavadas B., Soares P., Camacho R. et al. Fine time scaling of purifying selection on human nonsynonymous mtDNA mutations based on the worldwide population tree and mother-child pairs // Hum. Mut. 2015. V. 36. P. 1100–1111. https://doi.org/10.1002/humu.22849
  26. Boucret L., Bris C., Seegers V. et al. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing // Hum. Rep. 2017. V. 32. P. 2101–2109. https://doi.org/10.1093/humrep/dex268
  27. Kang E., Wu J., Gutierrez N. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations // Nature. 2016. V. 540. P. 270–275. https://doi.org/10.1038/nature20592
  28. Fleischmann Z., Cote-L’Heureux A., Franco M. et al. Reanalysis of mtDNA mutations of human primordial germ cells (PGCs) reveals NUMT contamination and suggests that selection in PGCs may be positive // Mitochondrion. 2024. V. 74. P. 101817. doi: 10.1016/j.mito.2023.10.005

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024