Comparative Analysis of Mutations of the Gynogenesis Maize Genes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The SNP polymorphism in gynogenesis (Zm_Pla1, Zm_CenH3, Zm_Dmp7) genes from haploid-inducing and control maize lines was evaluated. Using sequencing and multiple alignment methods the SNP, deletions, insertions in the target genes was established in comparing with the reference B73 maize line, and the phylogenetic trees were prepared. The presence of a 4-nucleotide insertions (4NI) and 15 identical SNP in the Zm_Pla1 gene of the ancestral Stock 6 and haploid-inducing ZMS-8 and ZMS-P maize lines and the absence of 4NI in the Zm_Pla1 gene in parthenogenetic as well as control maize lines were established. Phylogenetic analysis of the Zm_Pla1 gene confirmed the relationships between Stock 6 and haploid-inducing ZMS-P and ZMS-8 maize lines from Saratov. The presence of 5 SNPs in the Zm_Dmp7 gene of the ZMS-8 line, 3 SNPs and one 3-nucleotide deletion in the Zm_Dmp7 gene of the ZMS-P line, 3 SNPs and a 9-nucleotide deletion in the Zm_Dmp7 gene of the KM line were observed. The SNP (at position 131 from the start codon) in the Zm_Dmp7 gene is the reason for the increased haploid-inducing ability in CAU5, but not for ZMS-P maize line. Additionally, the 3-nucleotide deletion in the Zm_Dmp7 gene in the ZMS-P maize line and a 9-nucleotide deletion in the KM maize line were observed.

Full Text

Restricted Access

About the authors

Ye. M. Moiseeva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

V. V. Fadeev

Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

Yu. V. Fadeeva

Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

S. I. Mazilov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

M. I. Chumakov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Author for correspondence.
Email: chumakov_m@ibppm.ru
Russian Federation, Saratov, 410049

References

  1. Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 59. P. 381–382. doi: 10.1086/282098
  2. Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. doi: 10.15252/embj.201796603
  3. Тырнов В.С., Завалишина А.Н. Индукция высокой частоты возникновения матроклинных гаплоидов кукурузы // Докл. АН СССР. 1984. Т. 276. С. 735–738.
  4. Zavalishina A.N., Tyrnov V.S. Induction of matroclinical haploidy in maize in vivo // Reproductive biology and plant breeding: XIII EUCARPIA Сongr. L. 1992. P. 221–222.
  5. Еналеева Н.Х., Тырнов В.С., Селиванова Л.П., Завалишина А.Н. Одинарное оплодотворение и проблема гаплоиндукции у кукурузы // ДАН. 1997. Т. 353. C. 405–407.
  6. Гуторова О.В., Апанасова Н.В., Юдакова О.И. Создание генетически маркированных линий кукурузы с наследуемым и индуцированным типами партеногенеза // Изв. Самар. науч. центра Росс. академии наук. 2016. T. 18. № 2. C. 341–344.
  7. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. Iss. 23. doi: 10.1242/dev.170076
  8. Cyprys P., Lindemeier M., Sprunck S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins // Nat. Plants. 2019. V. 5. P. 253–257. doi: 10.1038/s41477-019-0382-3
  9. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nat. Plants. 2019. V. 5. P. 575–580. doi: 10.1038/s41477-019-0443-7
  10. Chalyk S., Baumann A., Daniel G. et al. Aneuploidy as a possible cause of haploid-induction in maize // Maize Genet. Coop. Newsletter. 2003. V. 77. P. 29–30.
  11. Zhang Z.L., Qiu F.Z., Liu Y.Z. et al. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.) // Plant Cell Rep. 2008. V. 27. P. 1851–1860. doi: 10.1007/s00299-008-0601-2
  12. Qiu F., Liang Y., Li Y. et al. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize // Curr. Plant Biol. 2014. V. 1. P. 83–90. doi: 10.1016/j.cpb.2014.04.001
  13. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Front. Plant Sci. 2016. V. 7. P. 1–11. doi: 10.3389/fpls.2016.00414
  14. Ravi M., Chan S.W.L. Haploid plants produced by centromere-mediated genome elimination // Nature. 2010. V. 464. P. 615–619. doi: 10.1038/nature08842
  15. Wang S., Jin W., Wang K. Centromere histone H3- and phospholipase-mediated haploid induction in plants // Plant Methods. 2019. V. 15. Article 42. doi: 10.1186/s13007-019-0429-5
  16. Hu H., Schrag T.A., Peis R. et al. The genetic basis of haploid induction in maize identified with a novel genome-wide association method // Genetics. 2016. V. 202. P. 1267–1276. doi: 10.1534/genetics.115.184234
  17. Тырнов B.C., Еналеева Н.Х. Автономное развитие зародыша и эндосперма у кукурузы // Докл. АН СССР. 1983. Т. 272. № 3. С. 722–725.
  18. Апанасова Н.В., Павлов Н.А. Новые партеногенетические линии кукурузы // Сб. ст. Межд. науч.-практ. конф., посвящ. 135-й годовщине со дня рождения акад. Н.И. Вавилова. ВАВИЛОВСКИЕ ЧТЕНИЯ. Саратов, 2022. С. 49–52. https://www.vavilovsar.ru/files/ckeditor/uploads/22-12-26/1672047844/ VCh2022%20SBORNIK.pdf
  19. Kolesova A.Y., Tyrnov V.S. Embryological peculiarities of tetraploid parthenogenetic maize forms // Maize Genet. Coop. Newsletter. 2012. V. 85. P. 65–66.
  20. Volokhina I., Gusev Y., Moiseeva Ye. et al. Gene expression in parthenogenic maize proembryos // Plants. 2021. V. 10 (5). doi: 10.3390/plants10050964
  21. Апанасова Н.В., Титовец В.В. Цитоэмбриологическое изучение проявления апомиксиса у кукурузы линии АТ-3 после опыления // Бюлл. Бот. сада Саратовского гос. ун-та. 2003. № 2. С. 194–197.
  22. Tyrnov V.S. Producing of parthenogenetic forms of maize // Maize Genet. Coop. Newsletter. 1997. V. 71. P. 73–74.
  23. Tyrnov V.S., Smolkina Y.V., Titovets V.V. Estimation of parthenogenesis frequency on the grounds of genetical and embryological data // Maize Genet. Coop. Newsletter. 2001. V. 75. P. 56–57.
  24. Моисеева E.М., Гусев Ю.С., Гуторова О.В., Чумаков М.И. Сравнительный анализ экспрессии генов HAP2/GCS1, GEX2 у линий кукурузы саратовской селекции // Генетика. 2023. Т. 59. № 3. С. 327–335. doi: 10.31857/S0016675823030098.
  25. Моисеева Е.М., Фадеев В.В., Красова Ю.В., Чумаков М.И. Анализ мутаций генов автономного эмбрио- и эндоспермогенеза кукурузы // Генетика. 2023. Т. 59. № 9. С. 1090–1093. doi: 10.31857/S0016675823090084.
  26. Чумаков М.И. Матроклинная гаплоидия и взаимодействие гамет у кукурузы (обзор) // Генетика. 2018. Т. 54. № 10. С. 1120–1124. doi: 10.1134/S1022795418100058
  27. Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520–522. doi: 10.1016/j.molp.2017.01.011
  28. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method // Proc. Natl Acad. Sci. USA. 2004. V. 101 (30). P. 11030–11035.
  29. Tamura K., Stecher G., Kumar S. MEGA 11: Molecular evolutionary genetics analysis version 11 // Mol. Biol. Evol. 2021. V. 38. P. 3022–3027. doi: 10.1093/molbev/msab120
  30. Trentin H.U., Frei U.K., Lübberstedt T. Breeding maize maternal haploid inducers // Plants. 2020. V. 9 (5). P. 614. doi.: 10.3390/plants90506

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Multiple alignment of nucleotide sequences of the Zm_Pla1 gene in the Saratov-bred maize lines KM, ZMS-8, ZMS-P, GPL-1, as well as the Stock 6 and B73 lines, performed using the BLAST program. Dots indicate nucleotide similarity in the maize lines, letters indicate single-nucleotide substitutions, and a hyphen indicates the absence of a nucleotide.

Download (1MB)
3. Fig. 2. Multiple alignment of nucleotide sequences of the Zm_Dmp7 gene in the KM, ZMS-8, ZMS-P maize lines of Saratov selection and the B73 reference line, performed using the BLAST program. Dots indicate the nucleotide similarity of the Zm_Dmp7 gene sequences of the studied lines with the Zm_Dmp7 gene sequence of the B73 reference line; ONS in the KM, ZMS-8 and ZMS-P lines are designated by letters; a hyphen means the absence of a nucleotide. The ONS of the ZMS-8 line, which coincides with the ONS of the CAU5 line, is underlined.

Download (404KB)
4. Fig. 3. Phylogram of maize lines for the Zm_Pla1 gene, constructed in the MEGA 11 program [by 16] (line designations are given according to the author's original). A version of the presentation with evolutionary distance data for each of the branches; the studied lines of Saratov selection are highlighted in frames.

Download (164KB)
5. Fig. 4. Phylogram of maize lines for the Zm_DMP7 gene, constructed in the MEGA 11 program [by 16] (line designations are given according to the author's original). A version of the presentation with evolutionary distance data for each of the branches; the studied lines of Saratov selection are highlighted in frames.

Download (166KB)

Copyright (c) 2024 Russian Academy of Sciences