Genome-Wide Identification and Characterization of Sugar Transporter Genes in Silver Birch

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sugar transporters play an important role in regulating the long-distance sucrose transport from source to sink organs. The main sucrose absorber in woody plants is developing wood. Thus, sucrose transport, regulated by SUT, SWEET, and MST gene families, will determine the formation of woody biomass. Based on silver birch (Betula pendula var. pendula Roth) genomic data, we identified and analyze encoding sugar transporters in Betula pendula. We conducted BLAST-search, phylogenetic, structural analysis and analysis of cis-acting elements of sugar transporter genes and determined their chromosomal localization. We were able to identify and characterize 3 genes of the SUT family, 10 SWEET genes and 36 MST genes, which have a typical number of functional and transmembrane domains for the family. It was shown that silver birch contains a smaller number of sugar transporters genes compared to A. thaliana, which is probably because of the apoplastic type of terminal phloem loading in Arabidopsis, while in silver birch phloem loading is carried out predominantly symplastically. The results obtained may be useful for further study of the participation of sucrose transporters in various biosynthetic processes in woody plants and provide a basis for various biotechnological manipulations.

Full Text

Restricted Access

About the authors

M. A. Korzhenevskyi

Forest Research Institute of the Karelian Research Centre Russian Academy of Sciences

Email: tselishcheva.yulia@mail.ru
Russian Federation, Petrozavods, 185910

Yu. L. Moshchenskaya

Forest Research Institute of the Karelian Research Centre Russian Academy of Sciences

Author for correspondence.
Email: tselishcheva.yulia@mail.ru
Russian Federation, Petrozavods, 185910

T. V. Tarelkina

Forest Research Institute of the Karelian Research Centre Russian Academy of Sciences

Email: tselishcheva.yulia@mail.ru
Russian Federation, Petrozavods, 185910

N. A. Galibina

Forest Research Institute of the Karelian Research Centre Russian Academy of Sciences

Email: tselishcheva.yulia@mail.ru
Russian Federation, Petrozavods, 185910

References

  1. Salojärvi J., Smolander O.P., Nieminen K. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch // Nat. Genet. 2017. V. 49. P. 904–912. https://doi.org/10.1038/ng.3862
  2. Koski V., Rousi M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland // Forestry: An Intern. J. Forest Research. 2005. V. 78. P. 187–198. doi: 10.1093/forestry/cpi017
  3. Любавская А.Я. Карельская береза. М.: Лесная пром-ть., 1978. 158 с.
  4. Новицкая Л.Л. Карельская береза: механизмы роста и развития структурных аномалий. Петрозаводск: Verso, 2008. 143 с.
  5. Novitskaya L., Nikolaeva N., Tarelkina T. Endogenous variability of the figured wood of Karelian birch // Wulfenia. 2016. V. 23. P. 175–188.
  6. Galibina N.A., Novitskaya L.L., Nikerova K.M. et al. Labile nitrogen availability in soil influences the expression of wood pattern in Karelian birch // Botanicheskii Zhurnal. 2019.V. 104. № 10. P. 1598–1609. doi: 10.1134/S0006813619100053
  7. Galibina N.A., Novitskaya L.L., Moshchenskaya Y.L., Krasavina M.S. Activity of sucrose synthase in trunk tissues of Karelian birch during cambial growth// Russ. J. Plant Physiol. 2015. V. 62. P. 381–389. doi: 10.1134/S102144371503005X
  8. Galibina N.A., Novitskaya L.L., Krasavina M.S., Moshchenskaya J.L. Invertase activity in trunk tissues of Karelian birch // Russ. J. Plant Physiol. 2015. V. 62. P. 753–760. doi: 10.1134/S1021443715060060
  9. Moshchenskaya Y.L., Galibina N.A., Topchieva L.V., Novitskaya L.L. Expression of genes encoding sucrose synthase isoforms during anomalous xylogenesis in Karelian birch // Russ. J. Plant Physiol. 2017. V. 64. P. 616–624. doi: 10.1134/S1021443717030104
  10. Novitskaya L.L., Nikolaeva N.N., Galibina N.A. et al. The greatest density of parenchyma inclusions in Karelian birch wood occurs at confluences of phloem flows // Silva Fenn. 2016. V. 50. P. 1461–1478. doi: 10.14214/sf.1461
  11. Galibina N.A., Novitskaya L.L., Nikerova K.M. Source-sink relations in the organs and tissues of silver birch during different scenarios of xylogenesis // Russ. J. Plant Physiol. 2019. V. 66. P. 308–315. doi: 10.1134/S1021443719020067
  12. Mahboubi A., Niittyla T. Sucrose transport and carbon fluxes during wood formation // Physiologia plantarum. 2018. V. 164. P. 67–81. doi: 10.1111/ppl.12729
  13. Van Bel A.J.E. Xylem-phloem exchange via the rays: The undervalued route of transport // J. Exp. Bot. 1990. V. 41. P. 631–644. doi: 10.1093/jxb/41.6.631
  14. Sauter J.J. The strasburger cells – equivalents of companion cells //Berichte der Deutschen Botan. Gesellschaft. 1980. Bd. 93. S. 29–42.
  15. Sauter J.J., Kloth S. Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus x Canadensis Moench ‘robusta’) // Planta. 1986. V. 168. P. 377–380. doi: 10.1007/BF00392363
  16. Roach M., Arrivault S., Mahboubi A. et al. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood // J. Exp. Bot. 2017. V. 68. P. 3529–3539. doi: 10.1093/jxb/erx200
  17. Uggla C., Magel E., Moritz T., Sundberg B. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine // Plant Physiol. 2001. V. 125. P. 2029–2039. doi: 10.1104/pp.125.4.2029
  18. Sokołowska K., Zagórska-Marek B. Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula × P. Tremuloides (Salicaceae) // Am. J. Bot. 2012. V. 99. P. 1745–1755. doi: 10.3732/ajb.1200349
  19. Weise A., Barker L., Kühn C. et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants // The Plant Cell. 2000. V. 12. P. 1345–1355. doi: 10.1105/tpc.12.8.1345
  20. Stadler R., Brandner J., Schulz A. et al. Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells // The Plant Cell. 1995. V. 7. P. 1545–1554. doi: 10.1105/tpc.7.10.1545
  21. Baker R.F., Leach K.A., Boyer N.R. et al. Sucrose transporter ZmSut1 expression and localization uncover new insights into sucrose phloem loading // Plant Physiol. 2016. V. 172. P. 1876–1898. doi: 10.1104/pp.16.00884
  22. Wang Y., Chen Y., Wei Q. et al. Phylogenetic relationships of sucrose transporters (SUTs) in plants and genome-wide characterization of SUT genes in Orchidaceae reveal roles in floral organ development // Peer J. 2021. V. 9. doi: 10.7717/peerj.11961
  23. Aoki N., Hirose T., Scofield G.N. et al. The sucrose transporter gene family in rice // Plant Cell Physiol. 2003. V. 44. P. 223–232. doi: 10.1093/pcp/pcg030
  24. Barth I., Meyer S., Sauer N. PmSUC3: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major // Plant Cell. 2003. V. 15. P. 1375–1385. doi: 10.1105/tpc.010967
  25. Meyer S., Lauterbach C., Niedermeier M. et al. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues // Plant Physiol. 2004. V. 134. P. 684–693. doi: 10.1104/pp.103.033399
  26. Hackel A., Schauer N., Carrari F. et al. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways // Plant J. 2004. V. 45. P. 180–192. doi: 10.1111/j.1365- 313X.2005.02572.x
  27. Peng D., Gu X., Xue L.-J. et al. Bayesian phylogeny of sucrose transporters: Ancient origins, differential expansion and convergent evolution in monocots and dicots // Frontiers in Plant Science. 2014. V. 5(615). P. 1–12. doi: 10.3389/fpls.2014.00615
  28. Chen H.Y., Huh J.H., Yu Y.C. et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection // Plant J. 2015. V. 83. P. 1046–1058. doi: 10.1111/tpj.12948
  29. Bock K.W., Honys D., Ward J.M. et al. Integrating membrane transport with male gametophyte development and function through transcriptomics // Plant Physiol. 2006. V. 140. P. 1151–1168. doi: 10.1104/pp.105.074708.
  30. Guan Y.F., Huang X.Y., Zhu J. et al. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis // Plant Physiol. 2008. V. 147. P. 852–863. doi: 10.1104/pp.108.118026
  31. Zhang L., Wang L., Zhang J. et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth // Tree Physiology. 2020. V. 41. P. 882–899. doi: 10.1093/treephys/tpaa145.
  32. Slewinski T.L. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: A physiological perspective // Mol. Plant. 2011. V. 4. P. 641–662. doi: 10.1093/mp/ssr051Li
  33. Afoufa-Bastien D., Medici A., Jeauffre J. et al. The Vitis vinifera sugar transporter gene family: Phylogenetic overview and macroarray expression profiling // Plant Biology. 2010. V. 10(245). P. 1–22. doi: 10.1186/1471-2229-10-245
  34. Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput // Nucl. Acids Res. 2004. V. 32. № 5. P. 1792–1797. doi: 10.1093/nar/gkh340
  35. Hu B., Jin J., Guo A.Y. et al. GSDS 2.0: An upgraded gene feature visualization server // Bioinformatics. 2015. V. 31. № 8. P. 1296–1297. doi: 10.1093/bioinformatics/btu817
  36. Chen Ch., Chen H., Zhang Y. et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data // Mol. Plant. 2020. V. 13. P. 1194–1202. doi: 10.1016/j.molp.2020.06.009
  37. Doidy J., Vidal U., Lemoine R. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisumsativum // PLoS One. 2019. V. 14. № 9. P. 1–19. https://doi.org/10.1371/journal.pone.0223173

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram showing the mechanism of sugar transport by transport proteins (ST).

Download (155KB)
3. Fig. 2. Phylogenetic trees: (a) – SUT family proteins of A. thaliana, V. vinifera, P. Trichocarpa and B. pendula; (b) – SWEET family proteins of A. thaliana, P. trichocarpa and B. pendula; (c) – MST family proteins of A. thaliana and B. pendula. Phylogenetic trees were constructed using MEGA 11.0 by the maximum likelihood method with the LG + G model and 1000 bootstrap analysis iterations for SUT, with the JTT + F + G model and 1000 bootstrap analysis iterations for SWEET, with the LG + F + G model and 500 bootstrap analysis iterations for MST. Phylogenetic trees were visualized using the iTOL online tool.

Download (373KB)
4. Fig. 3. Exon-intron organization of the SUT gene family of A. thaliana, P. trichocarpa and B. pendula (a), the SWEET gene family of A. thaliana and B. pendula (b) and the MST gene family of A. thaliana and B. pendula (c). CDS and gene sequences of birch were obtained from the genome on the online resource Genomevolution. (The online tool http://gsds.gao-lab.org/ was used for processing and visualization).

Download (315KB)
5. Fig. 4. Conserved motifs, functional and transmembrane domains of ST B. pendula of the SUT family (a), SWEET family (b) and MST family (c). Protein sequences of birch genes were obtained from the genome on the Genomevolution online resource. Conserved motifs were identified using the MEME tool, functional domains were determined by the NCBI CDD-Search tool, and transmembrane domains were determined using TMHMM 3.0.

Download (943KB)
6. Fig. 5. Chromosomal localization of ST genes of B. pendula. Genes of the same family are highlighted in the same color. Visualized using the TBtools tool.

Download (163KB)

Copyright (c) 2024 Russian Academy of Sciences