The Meiotic Drive: Intragenomic Competition and Selection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article considers the distribution and mechanisms of the meiotic drive as a phenomenon manifested in unequal transmission of gene alleles and/or homologous chromosomes into gametes during meiosis. The meiotic drive has been studied in the most detail in Drosophila, mice, corn and in ascomycete fungi of the genera Neurospora and Podospora. The consequence of the meiotic drive is a shift in the frequencies of alleles in the gene pool and the maintenance of non-adaptive traits in the population.

Full Text

Restricted Access

About the authors

I. A. Zakharov

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Author for correspondence.
Email: iaz34@mail.ru
Russian Federation, Moscow, 119991

References

  1. Mayr E. The objects of selection // Proc. Natl Ac. Sci. USA. 1997. V. 94. P. 2091–2094.
  2. Lindholm A.K., Dyer K.A., Firman R.C. et al. The ecology and evolutionary dynamics of meiotic drive // Trends Ecol. Evol. 2016. V. 31. P. 315–326. doi: 10.1016/j.tree.2016.02.001
  3. Courret C., Chang C.-H., Wei K.H.-C. et al. Meiotic drive mechanisms: Lesions from Drosophila // Proc. R. Soc. B. 2019. V. 286. doi.org/1098/rspb.2019.1430
  4. Gershenson S. A new sex-ratio abnormality in Drosophila obscura // Genetics. 1928. V. 13. P. 488–507.
  5. Sturtevant A.H., Dobzhansky Th. Geographical distribution and cytology of “sex ratio” in Drosophila pseudobscura and related species // Genetics. 1936. V. 21. P. 473–490.
  6. Sandler L., Hiraizumi Y., Sandler I. Meiotic drive in natural populations of Drosophila melanogaster. I. The cytogenetic basis of segregation-distortion // Genetics. 1959. V. 44. P. 233–250. doi.org / 10.1093/genetics/44.2.233
  7. Stalker H.D. The genetic systems modifying meiotic drive in Drosophila paramelanica // Genetics. 1961. V. 46. P. 177–202. doi.org/10.1093/genetics/46.2.177
  8. James A.C., Jaenike J. “Sex ratio” meiotic drive in Drosophila testacea // Genetics. 1990. V. 126. P. 651–656. doi.org/10.1093/genetics/126.3.651
  9. Sandler L., Novitski E. Meiotic drive as an evolutionary force // Am. Nat. 1957. V. 91. P. 105–110. doi: 10.1086/281969
  10. Zimmering S., Sandler L., Nicoletti B. Mechanisms of meiotic drive // Ann. Rev. Genet. 1970. V. 4. P. 409–436.
  11. Cazemajor M., Joly D., Montchamp-Moreau C. Sex ratio meiotic drive in Drosophila simulans is related to equational nondisjuncton of the Y chromosome // Genetics. 2000. V. 154. P. 229–236.
  12. Tao Y., Araripe L., Kingan S.B. et al. A sex-ratio meiotic drive system in Drosophila simulans. II. An X-linked distorter // PLoS Biol. 2007. V. 5. doi: 10.1371/journal.pbio.0050293
  13. Unckless R.L., Larracuente A.M., Clark A.G. Sex ratio, meiotic drive and Y-linked resistance in Drosophila affinis // Genetics. 2015. V. 199. P. 831–840. doi: 10.1534/genetics.114.173948
  14. Lin C.J., Hu F., Dubruille R. et al. The hpRNA/RNAi pathway is essential to resolve intragenomic conflict in the Drosophila male germline // Dev. Cell. 2018. V. 46. P. 316–326. doi: 10.1016/j.devcel.2018.07.004
  15. Kusano A., Staber C., Ganetzky B. Nuclear mislocalization of enzymatically active RanGAP causes segregation distortion in Drosophila // Dev. Cell. 2001. V. 1. P. 351–361. doi: 10.1016/51534-5807(01)00042-9
  16. Chesley P., Dunn L.C. The inheritance of taillessness (anury) in the house mouse // Genetics. 1936. V. 21. P. 525–536.
  17. Сафронова Л.Д., Чубыкин В.Л. Мейотический драйв у мышей, содержащих в геноме t-комплекс // Генетика. 2013. Т. 49. С. 1021–1035. doi: 10.7868/S001667581306009X
  18. Сафронова Л.Д. Эмбриональные эффекты t-гаплотипов у мышей // Онтогенез. 2009. Т. 40. С. 30–39.
  19. Totgunakov N.Y., Kizilova E.A., Karamysheva T.V. et al. Homogeneously staining region (HSR) in chromosome 1 of the house mouse: Synapsis and recombination in meiosis // Cytogenet. Genome Res. 2021. V. 161. P. 14–22. doi: 10.1159/000513266
  20. Agulnik S.I., Agulnik A.I., Ruvinsky A.O. Meiotic drive in female mice heterozygous for the HSR inserts on chromosome 1 // Genet Res. 1990. V. 55. P. 97–100.
  21. Ruvinsky A.O. Meiotic drive in female mice: an essay // Mammal. Genet. 1995. V. 6. P. 315–320.
  22. Sabantsev I., Spitsin O., Agulnik S. et al. Population dynamics of aberrant chromosome 1 in mice // Heredity. 1993. V. 70. P. 481–489.
  23. Friocourt G., Perrin A., Saunders P.A. et al. Bypassing Mendel’s first law: Тransmission ratio distortion in mammals // Int. J. Mol. Sci. 2023. V. 24. doi.org/10.3390/ijms24021600
  24. Pardo-Manuel de Villena F., Sapienza C. Female meiosis drives karyotypic evolution in mammals // Genetics. 2001. V. 159. P. 1179–1189.
  25. Blackmon H., Justison J., Mayrose I. et al. Meiotic drive shapes rates of karyotype evolution in mammals // Evolution. 2019. V. 73. P. 511–523.
  26. Баклушинская И.Ю. Хромосомные перестройки, реорганизация генома и видообразование // Зоолог. журн. 2016. Т. 95. С. 376–393. doi: 10.7868/S0044513416040036
  27. Rhoades M.M. Preferential segregation in maize // Genetics. 1942. V. 27. P. 395–407. doi.org/10.1093/genetics/27.4.395
  28. Rhoades M.M., Dempsey E. The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize // Genetics. 1966. V. 53. P. 989–1020. dio.org/10.1093/genetics/53.5.989
  29. Birchler J.A., Dawe R.K., Doebley J.F. Marcus Rhoades, preferential segregation and meiotic drive // Genetics. 2003. V. 164. P. 835–841. doi.org/10.1093/genetics/164.3.835
  30. Kanizay B., Albert P.S., Birchler J.A. et al. Intragenomic conflict between the two major knob repeats of maize // Genetics. 2013. V. 194. P. 81–89. doi.org/10.1534/genetics.112.148882
  31. Finseth F. Female meiotic drive in plants: Mechanisms and dynamic // Curr. Opin. Genet. Dev. 2023. V. 82. doi.org/101016/j.gde.2023.102101
  32. Fishman L., Willis G.H. A novel meiotic drive locus almost completely distorts segregation in Mimulus (monkeyflower) hybrids // Genetics. 2005. V. 169. P. 347–353. doi.org/ 10.1534/genetics.104.032789
  33. Zanders S., Johannesson H. Molecular mechanisms and evolutionary consequences of spore killer in Ascomycetes // Microb. Mol. Biol. Rev. 2021. V. 85. doi.org/10.1128/MMBR.00016-21
  34. Turner B.C., Perkins D.D. Spore killer, a chromosomal factor in Neurospora that kills meiotic products not containing it // Genetics. 1979. V. 93. P. 587–606. doi.org/10.1093/genetics/93.3.587
  35. Campbell J.L., Turner B.C. Recombination blok in the Spore killer region of Neurospora // Genome . 1987. V. 29. P. 129–135. doi: 10.1139/g87-022
  36. Svedberg J., Vogan A.A., Rhoades N.A. et al. An introgressed gene causes meiotic drive in Neurospora sitophila // Proc. Natl Ac. Sci. USA. 2021. V. 118. doi.org/10.1073/pnas.2026605118
  37. Vogan A.A., Ament-Velasques S.L., Bastiaans E. et al. The Enterprise, a massive transposon carring Spok meiotic drive genes // Genom. Res. 2021. V. 31. P. 789–798. doi: 101101/gr.267609.120
  38. Dalstra H.J.P., Swart K., Debets A.J.M. et al. Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserine // Proc. Natl Ac. Sci. USA. 2003. V. 100. P. 6616–6621. doi.org/10.1073/pnas.1030058100
  39. Kathariou S., Spieth P.T. Spore killer polymorphism in Fusarium moniliforme // Genetics. 1982. V. 102. P. 19–24.
  40. Zanders S.E., Eickbush M.T., Yu J. et al. Genome rearrangements and pervasive meiotic drive cause hybride infertility in fission yeast // eLife. 2014. V. 3. doi: 10.7554/eLife.02630
  41. Zanders S.E., Unckless R.L. Fertility costs of meiotic drivers // Curr. Biol. 2019. V. 29. P. R512–R520. doi.org/10.1016/j.cub.2019.03.046

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences