Polymorphism of Core and Symbiotically Specialized Genes in the Polytypic Species of Nodule Bacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The polytypic species of nodule bacteria Rhizobium leguminosarum (includes biovars viciae and trifolii) and Neorhizobium galegae (biovars orientalis and officinalis) differ in the nucleotide polymorphism of housekeeping genes (hkg) and of symbiotically specialized genes (sym) that control the formation of N2-fixing nodules in leguminous plants. In R. leguminosarum, p-distance values for sym genes are higher than for hkg genes in strains from the same and from different biovars. In N. galegae, differences between biovars in sym genes are higher than in hkg genes while within biovars, polymorphism in sym genes is lower than in hkg genes. Coefficients of biovar differentiation for both groups of genes are higher in N. galegae than in R. leguminosarum, possibly reflecting the spatial isolation of N. galegae biovars. In these species of rhizobia, the phylogenetic congruence of sym and hkg genes is more pronounced in N. galegae than in R. leguminosarum. This difference indicates an active transfer of sym genes in R. leguminosarum populations possibly representing an important factor of the deep diversification for symbiotic traits in this rhizobia species.

About the authors

N. A. Provorov

All-Russia Research Institute of Agricultural Microbiology

Author for correspondence.
Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg

A. K. Kimeklis

All-Russia Research Institute of Agricultural Microbiology; Saint Petersburg State University

Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg; Russia, 199034, Saint Petersburg

E. S. Karasev

All-Russia Research Institute of Agricultural Microbiology

Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg

S. Khosid

All-Russia Research Institute of Agricultural Microbiology

Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg

O. P. Onishchuk

All-Russia Research Institute of Agricultural Microbiology

Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg

O. N. Kurchak

All-Russia Research Institute of Agricultural Microbiology

Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg

E. E. Andronov

All-Russia Research Institute of Agricultural Microbiology; Dokuchaev Soil Institute

Email: provorovnik@yandex.ru
Russia, 196608, Saint Petersburg; Russia, 109017, Moscow

References

  1. Young J.P., Crossman L.C., Johnston A.W.B. et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components // Genome Biol. 2006. V. 7. https://doi.org/10.1186/gb-2006-7-4-r34
  2. Provorov N.A., Andronov E.E., Kimeklis A.K. et al. Microevolution, speciation and macroevolution in rhizobia: Genomic mechanisms and selective patterns // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1026943
  3. Rogel M.A., Ormeño-Orrillo E., Martinez-Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes // Syst. Appl. Microbiol. 2011. V. 34. № 2. P. 96–104. https://doi.org/10.1016/j.syapm.2010.11.015
  4. Карасев Е.С., Андронов Е.Е., Аксенова Т.С. и др. Эволюция ризобий козлятника (Neorhizobium galegae): анализ полиморфизма генов фиксации азота и развития клубеньков // Генетика. 2019. Т. 55. № 2. С. 234–238. https://doi.org/10.1134/S0016675819020085
  5. Кимеклис А.К., Кузнецова И.Г., Сазанова А.Л. и др. Дивергентная эволюция симбиотических бактерий: ризобии реликтового бобового Vavilovia formosa формируют обособленную группу в пределах вида Rhizobium leguminosarum bv. viciae // Генетика. 2018. Т. 54. № 7. С. 851–855. https://doi.org/10.1134/S0016675818070068
  6. Kimeklis A., Chirak E., Kuznetsova I. et al. Rhizobia isolated from the relict legume Vavilovia formosa represent a genetically specific group within Rhizobium leguminosarum biovar viciae // Genes. 2019. V. 10. https://doi.org/10.3390/genes10120991
  7. Saitou N., Nei M. The Neighbor-joining method: A new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 1987. V. 4. № 4. P. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  8. Nei M., Kumar S. Molecular Evolution and Phylogenetics. N. Y.: Oxford Univ. Press, 2000. 248 p.
  9. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap // Evolution. 1985. V. 39. № 4. P. 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420
  10. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  11. Letunic I., Bork P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation // Nucl. Ac. Res. 2021. V. 47(W1). https://doi.org/10.1093/nar/gkz239
  12. Verity R., Nichols R. What is genetic differentiation, and how should we measure it – GST, D, neither or both? // Mol. Ecol. 2014. V. 23. № 17. P. 4216–4225. https://doi.org/10.1111/mec.12856
  13. Österman J., Marsh J., Laine P.K. et al. Genome sequencing of two Neorhizobium galegae strains reveals a noe T gene responsible for the unusual acetylation of the nodulation factors // BMC Genomics. 2014. V. 15. № 1. https://doi.org/10.1186/1471-2164-15-500
  14. Andronov E., Terefework Z., Roumiantseva M. et al. Symbiotic and genetic diversity of Rhizobium galegae isolates collected from the Galega orientalis gene center in the Caucasus // Appl. Environ. Microbiol. 2003. V. 69. № 2. P. 1067–1074.
  15. Beringer J.E., Brewin N.J., Johnston A.W.B. The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation // Heredity. 1980. V. 45. № 2. P. 161–186.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (428KB)

Copyright (c) 2023 Н.А. Проворов, А.К. Кимеклис, Е.С. Карасев, С. Хосид, О.П. Онищук, О.Н. Курчак, Е.Е. Андронов