Transcriptomic Profiling of Placental Cells in Preeclampsia as an Effective Tool for Personalized Medicine
- Authors: Trifonova E.A.1, Babovskaya A.A.1, Zarubin A.A.1, Serebrova V.N.1, Gavrilenko M.M.1, Svarovskaya M.G.1, Izhoykina E.V.2, Kutsenko I.G.2, Stepanov V.A.1
-
Affiliations:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center
- Siberian State Medical University
- Issue: Vol 59, No 12 (2023)
- Pages: 1427-1439
- Section: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://rjpbr.com/0016-6758/article/view/667027
- DOI: https://doi.org/10.31857/S0016675823120135
- EDN: https://elibrary.ru/QERSXD
- ID: 667027
Cite item
Abstract
At present transcriptomics is one of the fastest developing fields of molecular biology, which allows to obtain detailed information about the functional activity of the genome both in normal and pathological conditions. We used modern transcriptomic technologies to comprehensively characterize the whole genome gene expression profile of human placental syncytiotrophoblast cells (STB) in physiological pregnancy and preeclampsia (PE). As a result of our analysis, we identified 26 differentially expressed genes (DEGs) in the STB cells between healthy and diseased states. The cluster of DEGs contains not only well-known candidate genes identified earlier in many foreign whole genome studies of the placenta (for example, LEP, INHBA and FLT1), but also new genes (AC098613.1, AC087857.1, FCRLB, TENM4, PTP4A1P7, LINC01225, etc.) that can be considered as new biological markers of PE and are of interest for further study. Functional enrichment annotation indicated that most of the DEGs were implicated in the signaling pathways of regulation of hormonal secretion, MAPK cascade, ERK1 and ERK2 cascade, positive regulation of cell adhesion and proliferation of endothelial cells. These processes may be associated with the development of PE at the STB cells level. Additionally, we revealed that alternative splicing of the FLT1 gene indicate the important role of this RNA processing mechanism in the pathogenetics of PE due to a significant increase in the transcriptional diversity of genes in STB cells. The expression level of the transcript encoding the protein isoform FLT-1 e15a was significantly increased in patients with PE compared to the control group. This study expands understanding of the molecular mechanisms involved in PE and can serve as a basis for developing of preventive, prognostic and therapeutic strategies in the field of personalized obstetrics.
About the authors
E. A. Trifonova
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Author for correspondence.
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
A. A. Babovskaya
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
A. A. Zarubin
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
V. N. Serebrova
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
M. M. Gavrilenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
M. G. Svarovskaya
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
E. V. Izhoykina
Siberian State Medical University
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
I. G. Kutsenko
Siberian State Medical University
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
V. A. Stepanov
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: ekaterina-trifonova@medgenetics.ru
Russia, 634050, Tomsk
References
- Gong S., Gaccioli F., Dopierala J. et al. The RNA landscape of the human placenta in health and disease // Nat. Communications. 2021. V. 12. № 1. P. 2639. https://doi.org/10.1038/s41467-021-22695-y
- Dimitriadis E., Rolnik D.L., Zhou W. et al. Pre-eclampsia // Nat. Reviews Disease Primers. 2023. V. 9. № 1. P. 8. https://doi.org/10.1038/s41572-023-00417-6
- Verlohren S., Brennecke S.P., Galindo A. et al. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia // Pregnancy Hypertension. 2022. V. 27. P. 42–50. https://doi.org/10.1016/j.preghy.2021.12.003
- Jena M.K., Sharma N.R., Petitt M. et al. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta // Biomolecules. 2020. V. 10. № 6. P. 953. https://doi.org/10.3390/biom10060953
- Redman C.W.G., Staff A.C., Roberts J.M. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways // Am. J. Obstetrics and Gynecology. 2022. V. 226. № 2. P. S907–S927. https://doi.org/10.1016/j.ajog.2020.09.047
- Tsang J.C.H., Vong J.S., Ji L. et al. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics // Proc. Natl Acad. Sci. USA. 2017. V. 114. № 37. P. E7786–E7795. https://doi.org/10.1073/pnas.1710470114
- Li H., Huang Q., Liu Y., Garmire L.X. Single cell transcriptome research in human placenta // Reproduction (Cambridge, England). 2020. V. 160. № 6. P. R155. https://doi.org/10.1530/REP-20-0231
- Benton S.J., Leavey K., Grynspan D. et al. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology // Am. J. Obstetrics and Gynecology. 2018. V. 219. № 6. P. 604.e1–604.e25. https://doi.org/10.1016/j.ajog.2018.09.036
- Trifonova E.A., Gabidulina T.V., Ershov N.I. et al. Analysis of the placental tissue transcriptome of normal and preeclampsia complicated pregnancies // Acta Naturae. 2014. V. 6. № 2(21). P. 71–83. https://doi.org/10.32607/20758251-2014-6-2-71-83
- Vashukova E.S., Glotov A.S., Fedotov P.V. et al. Placental microRNA expression in pregnancies complicated by superimposed pre‑eclampsia on chronic hypertension // Mol. Med. Reports. 2016. V. 14. № 1. P. 22–32. https://doi.org/10.3892/mmr.2016.5268
- Liu S., Xie X., Lei H. et al. Identification of key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in preeclampsia using bioinformatics analysis // Medical Science Monitor: Intern. Med. J. Experim. Clin. Research. 2019. V. 25. P. 1679. https://doi.org/10.12659/MSM.912801
- Robson S.C., Simpson H., Ball E. et al. Punch biopsy of the human placental bed // Am. J. Obstetrics and Gynecology. 2002. V. 187. № 5. P. 1349–1355. https://doi.org/10.1067/mob.2002.126866
- Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data // Bioinformatics. 2010. V. 26. № 1. P. 139–140. https://doi.org/10.1093/bioinformatics/btp616
- Liberzon A., Subramanian A., Pinchback R. et al. Molecular signatures database (MSigDB) 3.0 // Bioinformatics. 2011. V. 27. № 12. P. 1739–1740. https://doi.org/10.1093/bioinformatics/btr260
- Franz M., Rodriguez H., Lopes C. et al. GeneMANIA update 2018 // Nucl. Acids Res. 2018. V. 46. № W1. P. W60–W64. https://doi.org/10.1093/nar/gky311
- Vaquero-Garcia J., Aicher J.K., Jewell S. et al. RNA splicing analysis using heterogeneous and large RNA-seq datasets // Nat. Communications. 2023. V. 14. № 1. P. 1230. https://doi.org/10.1038/s41467-023-36585-y
- Wang Z., Zhao G., Zibrila A.I. et al. Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p38 MAPK/NF-κB pathway // Mol. Hum. Reproduction. 2021. V. 27. № 8. https://doi.org/10.1093/molehr/gaab045
- Guo L., Liu M., Duan T. Hydrogen suppresses oxidative stress by inhibiting the p38 MAPK signaling pathway in preeclampsia // Adv. Clin. & Experim. Medicine. 2023. V. 32. № 3. P. 357–367. https://doi.org/10.17219/acem/154623
- Zhang J., Liu X., Gao Y. Abnormal H3K27 histone methylation of RASA1 gene leads to unexplained recurrent spontaneous abortion by regulating Ras-MAPK pathway in trophoblast cells // Mol. Biol. Reports. 2021. V. 48. № 6. P. 5109–5119. https://doi.org/10.1007/s11033-021-06507-6
- Karumanchi S.A. Angiogenic factors in preeclampsia: from diagnosis to therapy // Hypertension. 2016. V. 67. № 6. P. 1072–1079. https://doi.org/10.1161/HYPERTENSIONAHA.116.06421
- Hiratsuka S., Minowa O., Kuno J. et al. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice // Proc. Natl Acad. of Sci. USA. 1998. V. 95. № 16. P. 9349–9354. https://doi.org/10.1073/pnas.95.16.9349
- Palmer K.R., Kaitu’u-Lino T.U.J., Hastie R. et al. Placental-specific sFLT-1 e15a protein is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity // Hypertension. 2015. V. 66. № 6. P. 1251–1259. https://doi.org/10.1161/HYPERTENSIONAHA.115.05883
- Palmer K. Assessing the circulating placental-specific anti-angiogenic protein sFLT-1 e15a in preeclampsia // Preeclampsia: Methods and Protocols. 2018. P. 27–37. https://doi.org/10.1007/978-1-4939-7498-6_3
Supplementary files
