Adaptive significance and origin of flavonoid biosynthesis genes in the grain of cultivated cereals
- Authors: Bulanov A.N.1,2, Voylokov A.V.2
-
Affiliations:
- Saint Petersburg State University
- Vavilov Institute of General genetics, Russian Academy of Sciences
- Issue: Vol 60, No 2 (2024)
- Pages: 3-20
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjpbr.com/0016-6758/article/view/666980
- DOI: https://doi.org/10.31857/S0016675824020012
- EDN: https://elibrary.ru/EDEEHR
- ID: 666980
Cite item
Abstract
The majority of cultivated cereals including maize, rice, wheat, barley, oat and rye are consisted of numerous varieties lacking anthocyanin pigmentation or having weak coloration of vegetative organs and/or caryopses. Only rare local races and wild related species have intense coloration of plants and/or grains. The coloration of caryopses is associated with the biosynthesis of colored flavonoids in maternal (pericarp and testa) and hybrid (aleuron) caryopsis tissues. The trait is controlled by dominant alleles of regulatory genes encoding conserved transcription factors of the MYB, bHLH-MYC, and WD40 families forming the MBW protein complex. Recent studies have proven the participation of uncolored and colored flavonoids in the response of plants to biotic and abiotic stresses, and significance of their presence in the whole grain foods has been determined. However, many questions about the adaptive effects and health benefits of anthocyanins remain unanswered. In particular, the reasons why the dominant alleles of regulatory genes controlling pericarp coloration did not become widespread in the course of domestication and breeding of cereals are not clear, although these genes receive special attention in association with health-improving effects of grain nutrition. This article discusses the similarity and specificity of the genetic control of the biosynthesis of flavonoids in the caryopsis in three related cultivated cereals – wheat, barley and rye, and their biological role in the development of the caryopsis and seed germination.
Keywords
Full Text

About the authors
A. N. Bulanov
Saint Petersburg State University; Vavilov Institute of General genetics, Russian Academy of Sciences
Author for correspondence.
Email: an.bulanov20002014@gmail.com
Russian Federation, Saint Petersburg, 199034; Moscow, 119991
A. V. Voylokov
Vavilov Institute of General genetics, Russian Academy of Sciences
Email: av_voylokov@mail.ru
Russian Federation, Moscow, 119991
References
- Agati G., Brunetti C., Fini A. et al. Are flavonoids effective antioxidants in plants? Twenty years of our investigation // Antioxidants. 2020. V. 9. № 11. P. 1098. https://doi.org/10.3390/antiox9111098
- Sharma P., Jha A. B., Dubey R. S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // J. Botany. 2012. V. 2012. P. 681. https://doi.org/10.1155/2012/217037
- Coe E.H., Neuffer M. G., Hoisington D. A. The genetics of corn // Corn and Corn Improvement. Madison: Am. Society of Agronomy, 1988. P. 81–259. https://doi.org/10.2134/agronmonogr18.3ed.c3
- Huang H., Ullah F., Zhou D. X. et al. Mechanisms of ROS regulation of plant development and stress responses // Frontiers in Plant Science. 2019. V. 10. P. 440‒478. https://doi.org/10.3389/fpls.2019.00800
- Yan W., Li J., Lin X. et al. Changes in plant anthocyanin levels in response to abiotic stresses: A meta-analysis // Plant Biotechnol. Reports. 2022. V. 16. № 5. P. 497–508. https://doi.org/10.1007/S11816-022-00777-7
- Paauw M., Koes R., Quattrocchio F. M. Alteration of flavonoid pigmentation patterns during domestication of food crops // J. Experim. Botany. 2019. V. 70. № 15. P. 3719–3735. https://doi.org/10.1093/jxb/erz141
- Li G., Wang L., Yang J. et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes // Nature Genetics. 2021. V. 53. № 4. P. 574‒580. https://doi.org/10.1038/S41588-021-00808-Z
- Rabanus-Wallace M.T., Hackauf B., Mascher M. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential // Nature Genetics. 2021. V. 53. № 4. P. 564–573. https://doi.org/10.1038/s41588-021-00807-0
- Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology // Plant Physiology. 2001. V. 126. P. 485–493. https://doi.org/10.1104/pp.126.2.485
- Davies K.M., Albert N. W., Schwinn K. E. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning // Funct. Plant Biology. 2012. V. 39. № 8. P. 619–638. https://doi.org/10.1071/FP12195
- Pucker B., Selmar D. Biochemistry and molecular basis of intracellular flavonoid transport in plants // Plants. 2022. V. 11. № 7. P. 963. https://doi.org/10.3390/plants11070963/S1
- Buhrman K., Aravena-Calvo J., Ross Zaulich C. et al. Anthocyanic vacuolar inclusions: From biosynthesis to storage and possible applications // Frontiers in Chemistry. 2022. V. 10. https://doi.org/10.3389/fchem.2022.913324
- Petrussa E., Braidot E., Zancani M. et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses // Intern. J. Mol. Sciences. 2013. V. 14. № 7. P. 14950–14973. https://doi.org/10.3390/ijms140714950
- Mackon E., Jeazet Dongho, Epse Mackon G. C., Ma Y. et al. Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis // Biomolecules. 2021. V. 11. № 3. https://doi.org/10.3390/biom11030394
- Zhu Q., Xie X., Xiang G. et al. In silico analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in Oryza sativa // Am. J. Plant Sciences. 2013. V. 4. P. 555–560. https://doi.org/10.4236/ajps.2013.43072
- Li T., Zhang W., Yang H. et al. Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize // Scientific Reports. 2019. V. 9. № 1. P. 6023. https://doi.org/10.1038/s41598–018–37697-y
- Tan X., Li K., Wang Z. et al. A review of plant vacuoles: formation, located proteins, and functions // Plants. 2019. V. 8. № 9. https://doi.org/10.3390/plants8090327
- Zheng Y., Zhang H., Deng X. et al. The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells // Scientific Reports. 2017. V. 7. № 1. https://doi.org/10.1038/srep41245
- Henry R.J., Furtado A., Rangan P. Pathways of photosynthesis in non-leaf tissues // Biology. 2020. V. 9. № 12. https://doi.org/10.3390/biology9120438
- Legland D., Le T. D.Q., Alvarado C. et al. New growth-related features of wheat grain pericarp revealed by synchrotron-based X-ray micro-tomography and 3D reconstruction // Plants. 2023. V. 12. № 5. https://doi.org/10.3390/plants12051038
- Simkin A.J., Faralli M., Ramamoorthy S. et al. Photosynthesis in non-foliar tissues: implications for yield // The Plant J. 2020. V. 101. № 4. P. 1001–1015. https://doi.org/10.1111/tpj.14633
- Kong L.A., Xie Y., Sun M. Z. et al. Comparison of the photosynthetic characteristics in the pericarp and flag leaves during wheat (Triticum aestivum L.) caryopsis development // Photosynthetica. 2016. V. 54. № 1. P. 40–46. https://doi.org/10.1007/S11099–015–0153-y
- Li Y.B., Yan M., Cui D. Z. et al. Programmed degradation of pericarp cells in wheat grains depends on autophagy // Frontiers in Genetics. 2021. V. 12. https://doi.org/10.3389/fgene.2021.784545
- Grafi G., Singiri J. R. Cereal husks: Versatile roles in grain quality and seedling performance // Agronomy. 2022. V. 12. № 1. P. 172. https://doi.org/10.3390/agronomy12010172
- Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination // J. Forestry Research. 2020. V. 31. № 1. P. 1–12. https://doi.org/10.1007/s11676-019-01034-4
- Walker A.R., Davison P. A., Bolognesi-Winfield A.C. et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein // Plant Cell. 1999. V. 11. № 7. P. 1337–1349. https://doi.org/10.1105/tpc.11.7.1337
- Morohashi K., Grotewold E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors // PLoS Genetics. 2009. V. 5, № 2. https://doi.org/10.1371/journal.pgen.1000396
- Morohashi K., Zhao M, Yang M. et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events // Plant Physiol. 2007. V. 145. № 3. P. 736–746. https://doi.org/10.1104/pp.107.104521
- Pesch M., Schultheiß I., Klopffleisch K. et al. TRANSPARENT TESTA GLABRA1 and GLABRA1 compete for binding to GLABRA3 in Arabidopsis // Plant Physiology. 2015. V. 168. № 2. P. 584–597. https://doi.org/10.1104/pp.15.00328
- Khlestkina E. The adaptive role of flavonoids: Emphasis on cereals // Cereal Res. Communications. 2013. V. 41. № 2. P. 185–198. https://doi.org/10.1556/crc.2013.0004
- Vaughan S.P., Baker J. M., Primavesi L. F. et al. Proanthocyanidin biosynthesis in the developing wheat seed coat investigated by chemical and RNA-Seq analysis // Plant Direct. 2022. V. 6. № 10. https://doi.org/10.1002/pld3.453
- Jende‐Strid B. Genetic control of flavonoid biosynthesis in barley // Hereditas. 1993. V. 119. № 2. P. 187–204. https://doi.org/10.1111/j.1601-5223.1993.00187.x
- Zykin P.A., Andreeva E. A., Lykholay A. N. et al. Anthocyanin composition and content in rye plants with different grain color // Molecules. 2018. V. 23. № 4. https://doi.org/10.3390/molecules23040948
- Dixon R.A., Sarnala S. Proanthocyanidin biosynthesis ‒ a matter of protection // Plant Physiology. 2020. V. 184. № 2. P. 579–591. https://doi.org/10.1104/pp.20.00973
- Himi E., Yamashita Y., Haruyama N. et al. Ant28 gene for proanthocyanidin synthesis encoding the R2R3-MYB domain protein (Hvmyb10) highly affects grain dormancy in barley // Euphytica. 2012. V. 188. № 1. P. 141–151. https://doi.org/10.1007/S10681-011-0552-5
- Himi E., Taketa S. Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy // Genome. 2015. V. 58. № 1. P. 43–53. https://doi.org/10.1139/gen-2014–0189
- Шоева О.Ю., Стрыгина К. В., Хлесткина Е. К. Гены, контролирующие синтез флавоноидных и меланиновых пигментов ячменя // Вавиловский журнал генетики и селекции. 2018. Т. 22. № 3. С. 333–342. https://doi.org/10.18699/VJ18.369
- Flint-Garcia S. A. Genetics and consequences of crop domestication // J. Agricultural and Food Chemistry. 2013. V. 61. № 35. P. 8267–8276. https://doi.org/10.1021/jf305511d
- Sun M., Corke H. Population genetics of colonizing success of weedy rye in Northern California // Theoretical and Applied Genetics. 1992. V. 83. № 3. P. 321–329. https://doi.org/10.1007/BF00224278
- Xu F., Tang J., Wang S. et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors // Nature Genetics. 2022. V. 54. № 12. P. 1972–1982. https://doi.org/10.1038/s41588-022-01240-7
- Skadhauge B., Thomsen K. K., Von Wettstein D. The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections // Hereditas. 1997. V. 126. № 2. P. 147–160. https://doi.org/10.1111/J.1601–5223.1997.00147.X
- Yonekura-Sakakibara K., Higashi Y., Nakabayashi R. The origin and evolution of plant flavonoid metabolism // Frontiers in Plant Science. 2019. V. 10. P. 943. https://doi.org/10.3389/fpls.2019.00943
- Pankin A., von Korff M. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare) // Current Opinion in Plant Biology. 2017. V. 36. P. 15–21. https://doi.org/10.1016/j.pbi.2016.12.001
- Alappat B., Alappat J. Anthocyanin pigments: Beyond aesthetics // Molecules. 2020. V. 25. № 23. https://doi.org/10.3390/molecules25235500
- Khoo H.E., Azlan A., Tang S. T., Lim S. M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits // Food and Nutrition Research. 2017. V. 61. № 1. https://doi.org/10.1080/16546628.2017.1361779
- Jia Y., Li B., Zhang Y. et al. Evolutionary dynamic analyses on monocot flavonoid 3′-hydroxylase gene family reveal evidence of plant-environment interaction // BMC Plant Biology. 2019. V. 19. № 1. P. 347. https://doi.org/10.1186/s12870-019-1947-z
- Jia Y., Selva C., Zhang Y. et al. Uncovering the evolutionary origin of blue anthocyanins in cereal grains // Plant J. 2020. V. 101. № 5. P. 1057–1074. https://doi.org/10.1111/tpj.14557
- Vikhorev A. V., Strygina K. V., Khlestkina E. K. Duplicated flavonoid 3’-hydroxylase and flavonoid 3ʹ,5ʹ-hydroxylase genes in barley genome // PeerJ. 2019. V. 2019. № 1. https://doi.org/10.7717/peerj.6266
- Khlestkina E.K., Shoeva O. Y. Intron loss in the chalcone-flavanone isomerase gene of rye // Mol. Breeding. 2014. V. 33. № 4. P. 953–959. https://doi.org/10.1007/s11032-013-0009-8
- van Tunen A. J., Koes R. E., Spelt C. E. et al. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes // EMBO J. 1988. V. 7. № 5. P. 1257–1263. https://doi.org/10.1002/j.1460–2075.1988.tb02939.x
- Häger K.P., Müller B., Wind C. et al. Evolution of legumin genes: Loss of an ancestral intron at the beginning of angiosperm diversification // FEBS Letters. 1996. V. 387. № 1. P. 94–98. https://doi.org/10.1016/0014-5793(96)00477-2
- Trapp S.C., Croteau R. B. Genomic organization of plant terpene synthases and molecular evolutionary implications // Genetics. 2001. V. 158. № 2. P. 811–832. https://doi.org/10.1093/genetics/158.2.811
- Jeffares D.C., Mourier T., Penny D. The biology of intron gain and loss // Trends in Genetics. 2006. V. 22. № 1. P. 16–22. https://doi.org/10.1016/j.tig.2005.10.006
- Ludwig S.R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region // Proc. Nat. Acad. Sci. U S A 1989. V. 86. № 18. P. 7092–7096. https://doi.org/10.1073/pnas.86.18.7092
- Paz-Ares J., Wienand U., Peterson P. A., Saedler H. Molecular cloning of the c locus of Zea mays: A locus regulating the anthocyanin pathway // EMBO J. 1986. V. 5. № 5. P. 829–833. https://doi.org/10.1002/j.1460-2075.1986.tb04291.x
- Goff S.A., Cone K. C., Fromm M. E. Identification of functional domains in the maize transcriptional activator C1: Comparison of wild-type and dominant inhibitor proteins // Genes and Development. 1991. V. 5. № 2. P. 298–309. https://doi.org/10.1101/gad.5.2.298
- Goff S.A., Cone K. C., Chandler V. L. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins // Genes and Development. 1992. V. 6. № 5. P. 864–875. https://doi.org/10.1101/gad.6.5.864
- Roth B.A., Goff S. A., Klein T. M., Fromm M. E. C1- and R-dependent expression of the maize Bz1 gene requires sequences with homology to mammalian myb and myc binding sites // Plant Cell. 1991. V. 3. № 3. P. 317–325. https://doi.org/10.1105/tpc.3.3.317
- Radicella J.P., Turks D., Chandler V. L. Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize // Plant Mol. Biology. 1991. V. 17. № 1. P. 127–130. https://doi.org/10.1007/BF00036813
- Selinger D.A., Chandler V. L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway // Plant Cell. 1999. V. 11. № 1. P. 5–14. https://doi.org/10.1105/tpc.11.1.5
- Zhang F., Gonzalez A., Zhao M. et al. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis // Development. 2003. V. 130. № 20. P. 4859–4869. https://doi.org/10.1242/dev.00681
- Gonzalez A., Zhao M., Leavitt J. M., Lloyd A. M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings // Plant J. 2008. V. 53. № 5. P. 814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
- Baudry A., Heim M. A., Dubreucq B. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana // Plant J. 2004. V. 39. № 3. P. 366–380. https://doi.org/10.1111/j.1365-313X.2004.02138.x
- Payne C.T., Zhang F., Lloyd A. M. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1 // Genetics. 2000. V. 156. № 3. P. 1349–1362. https://doi.org/10.1093/genetics/156.3.1349
- Baudry A., Caboche M., Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana // Plant J. 2006. V. 46. № 5. P. 768–779. https://doi.org/10.1111/j.1365–313X.2006.02733.x
- Radicella J.P., Brown D., Tolar L. A., Chandler V. L. Allelic diversity of the maize B regulatory gene: Different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production // Genes and Development. 1992. V. 6. № 11. P. 2152–2164. https://doi.org/10.1101/gad.6.11.2152
- Albert N.W., Butelli E., Moss S. M.A. et al. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus // New Phytologist. 2021. V. 231. № 2. P. 849–863. https://doi.org/10.1111/nph.17142
- Walker E.L., Robbins T. P., Bureau T. E. et al. Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex // EMBO J. 1995. V. 14. № 10. P. 2350–2363. https://doi.org/10.1002/j.1460–2075.1995.tb07230.x
- Kermicle J. L. Somatic and meiotic instability of R-stippled, an aleurone spotting factor in maize // Genetics. 1970. V. 64. № 2. P. 247–258. https://doi.org/10.1093/genetics/64.2.247
- Robbins T.P., Walker E. L., Kermicle J. L. et al. Meiotic instability of the R-r complex arising from displaced intragenic exchange and intrachromosomal rearrangement // Genetics. 1991. V. 129. № 1. P. 271–283. https://doi.org/10.1093/genetics/129.1.271
- Harris L.J., Currie K., Chandler V. L. Large tandem duplication associated with a Mu2 insertion in Zea mays B-Peru gene // Plant Molecular Biology. 1994. V. 25. № 5. P. 817–828. https://doi.org/10.1007/BF00028876
- Selinger D.A., Chandler V. L. B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream // Plant Physiology. 2001. V. 125. № 3. P. 1363–1379. https://doi.org/10.1104/pp.125.3.1363
- Zimmermann I.M., Heim M. A., Weisshaar B., Uhrig J. F. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins // Plant J. 2004. V. 40. № 1. P. 22–34. https://doi.org/10.1111/j.1365-313X.2004.02183.x
- Strygina K.V., Börner A., Khlestkina E. K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone // BMC Plant Biology. 2017. V. 17. Suppl 1. P. 184. https://doi.org/10.1186/s12870-017-1122-3
- Zeven A. C. Wheats with purple and blue grains: a review // Euphytica. 1991. V. 56. № 3. P. 243–258. https://doi.org/10.1007/BF00042371
- Li N., Li S., Zhang K. et al. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum // PLoS One. 2017. V. 12. № 7. P. 1–13. https://doi.org/10.1371/journal.pone.0181116
- Liu X., Zhang M., Jiang X. et al. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat – Triticum boeoticum substitution line // Frontiers in Plant Science. 2021. V. 12. https://doi.org/10.3389/fpls.2021.762265
- Martis M.M., Zhou R., Haseneyer G. et al. Reticulate evolution of the rye genome // Plant Cell. 2013. V. 25. № 10. P. 3685–3698. https://doi.org/10.1105/tpc.113.114553
- Hanson M.A., Gaut B. S., Stec A. O. et al. Evolution of anthocyanin biosynthesis in maize kernels: The role of regulatory and enzymatic loci // Genetics. 1996. V. 143. № 3. P. 1395–1407. https://doi.org/10.1093/genetics/143.3.1395
- Petroni K., Pilu R., Tonelli C. Anthocyanins in corn: A wealth of genes for human health // Planta. 2014. V. 240. № 5. P. 901–911. https://doi.org/10.1007/S00425-014-2131-1
- Sweeney M.T., Thomson M. J., Pfeil B. E., McCouch S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice // Plant Cell. 2006. V. 18. № 2. P. 283–294. https://doi.org/10.1105/tpc.105.038430
- Himi E., Nisar A., Noda K. Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat // Genome. 2005. V. 48. № 4. P. 747–754. https://doi.org/10.1139/G05–026
- Himi E., Maekawa M., Miura H., Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat // Theoretical and Applied Genetics. 2011. V. 122. № 8. P. 1561–1576. https://doi.org/10.1007/s00122-011-1555-2
- Oikawa T., Maeda H., Oguchi T. et al. The birth of a black rice gene and its local spread by introgression // Plant Cell. 2015. V. 27. № 9. P. 2401–2414. https://doi.org/10.1105/tpc.15.00310
- Kim D.H., Yang J. H., Ha S. H. et al. An OsKala3, R2R3 MYB TF, is a common key player for black rice pericarp as main partner of an OsKala4, bHLH TF // Frontiers in Plant Science. 2021. V. 12. https://doi.org/10.3389/fpls.2021.765049
- Stetter M.G., Vidal-Villarejo M., Schmid K. J. Parallel seed color adaptation during multiple domestication attempts of an ancient new world grain // Mol. Biology and Evolution. 2020. V. 37. № 5. P. 1407–1419. https://doi.org/10.1093/molbev/msz304/5682418
- Tereshchenko O.Y., Arbuzova V. S., Khlestkina E. K. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes // J. Cereal Science. 2013. V. 57. № 1. P. 10–13. https://doi.org/10.1016/j.jcs.2012.09.010
- Tereshchenko O.Y., Gordeeva E. I., Arbuzova V. S. et al. The D genome carries a gene determining purple grain colour in wheat // Cereal Res. Communications. 2012. V. 40. № 3. P. 334–341. https://doi.org/10.1556/crc.40.2012.3.2
- Shoeva O.Y., Gordeeva E. I., Khlestkina E. K. The regulation of anthocyanin synthesis in the wheat pericarp // Molecules. 2014. V. 19. № 12. P. 20266–20279. https://doi.org/10.3390/molecules191220266
- Jiang W., Liu T., Nan W. et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat // J. Experimental Botany. 2018. V. 69. № 10. P. 2555–2567. https://doi.org/10.1093/jxb/ery101
- Zong Y., Xi X., Li S. et al. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp // Frontiers in Plant Science. 2017. V. 8. https://doi.org/10.3389/fpls.2017.01645
- Shoeva O.Y., Mock H. P., Kukoeva T. V. et al. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare // PLoS One. 2016. V. 11. № 10. https://doi.org/10.1371/journal.pone.0163782
- Cockram J., White J., Zuluaga D. L. et al. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome // Proc. Nat. Acad. Sci. U S A. 2010. V. 107. № 50. P. 21611–21616. https://doi.org/10.1073/pnas.1010179107
- Gordeeva E.I., Glagoleva A. Y., Kukoeva T. V. et al. Purple-grained barley (Hordeum vulgare L.): Marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network // BMC Plant Biology. 2019. V. 19. Suppl 1. P. 52. https://doi.org/10.1186/s12870-019-1638-9
- Антропов В.И., Антропов В. Ф. Рожь – Secale L. // Культурная флора СССР. Т. 2. Хлебные злаки. Л.: Гос. изд-во совхозной и колхозной лит-ры, 1936. С. 3–95.
- Смирнов В.Г., Соснихина С. П. Генетика ржи. Л.: Изд-во Ленинградского ун-та, 1984. 264 с.
- de Vries J. N., Sybenga J. Chromosomal location of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using the translocation tester set // Pflanzenzücht. 1984. V. 192. P. 177–139.
- Raviv B., Godwin J., Granot G., Grafi G. The dead can nurture: Novel insights into the function of dead organs enclosing embryos // Interna, J, Mol, Sciences. 2018. V. 19. № 8. https://doi.org/10.3390/ijms19082455
- Lascoux M., Glémin S., Savolainen O. Local adaptation in plants // eLS. 2016. P. 1–7. https://doi.org/10.1002/9780470015902.a0025270
- Dwivedi S.L., Mattoo A. K., Garg M. et al. Developing germplasm and promoting consumption of anthocyanin-rich grains for health benefits // Frontiers in Sustainable Food Systems. 2022. V. 6. https://doi.org/10.3389/fsufs.2022.867897
- Gordeeva E., Shoeva O., Mursalimov S. et al. Fine points of marker-assisted pyramiding of anthocyanin biosynthesis regulatory genes for the creation of black-grained bread wheat (Triticum aestivum L.) Lines // Agronomy. 2022. V. 12. № 12. https://doi.org/10.3390/agronomy12122934
- Casas M.I., Duarte S., Doseff A. I., Grotewold E. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop // Frontiers in Plant Science. 2014. V. 5. https://doi.org/10.3389/fpls.2014.00440
- Glagoleva A., Kukoeva T., Mursalimov S. et al. Effects of combining the genes controlling anthocyanin and melanin synthesis in the barley grain on pigment accumulation and plant development // Agronomy. 2022. V. 12. № 1. https://doi.org/10.3390/agronomy12010112
Supplementary files
