Адаптивное значение и происхождение генов биосинтеза флавоноидов в зерновке культурных злаков
- Авторы: Буланов А.Н.1,2, Войлоков А.В.2
-
Учреждения:
- Санкт-Петербургский государственный университет
- Институт общей генетики им. Н. И. Вавилова Российской академии наук
- Выпуск: Том 60, № 2 (2024)
- Страницы: 3-20
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjpbr.com/0016-6758/article/view/666980
- DOI: https://doi.org/10.31857/S0016675824020012
- EDN: https://elibrary.ru/EDEEHR
- ID: 666980
Цитировать
Аннотация
Большинство культурных злаков – кукуруза, рис, пшеница, ячмень, овес и рожь представлены многочисленными сортами без антоциановой окраски или со слабой окраской вегетативных органов и/или зерновок. Интенсивной окраской растений и/или зерна обладают редкие местные расы и дикорастущие родственные виды. Окраска зерновок связана с биосинтезом окрашенных флавоноидов в материнских (перикарп и теста) и гибридных (алейрон) тканях зерновки и контролируется доминантными аллелями регуляторных генов, кодирующих консервативные транскрипционные факторы семейств MYB, bHLH-MYC и WD40, составляющих белковый регуляторный комплекс MBW. Исследованиями последних лет доказано участие неокрашенных и окрашенных флавоноидов в реакции растений на биотические и абиотические стрессовые факторы, установлена их функциональная значимость в составе пищевых продуктов из цельного зерна. Однако многие вопросы по адаптивности и полезности антоцианов остаются без ответа или даже не ставятся. В частности, не ясны причины, по которым в ходе одомашнивания и селекции зерновых злаков не получили широкого распространения доминантные аллели регуляторных генов окраски перикарпа, несмотря на то, что именно этим генам уделяется особое внимание в связи с оздоровительным эффектом зернового питания. Настоящая статья посвящена рассмотрению сходства и специфики генетического контроля биосинтеза флавоноидов в зерновке у трех родственных культурных злаков – пшеницы, ячменя и ржи, их биологической роли в ходе развития зерновки и прорастания семян.
Ключевые слова
Полный текст

Об авторах
А. Н. Буланов
Санкт-Петербургский государственный университет; Институт общей генетики им. Н. И. Вавилова Российской академии наук
Автор, ответственный за переписку.
Email: an.bulanov20002014@gmail.com
Россия, Санкт-Петербург, 199034; Москва, 119991
А. В. Войлоков
Институт общей генетики им. Н. И. Вавилова Российской академии наук
Email: av_voylokov@mail.ru
Россия, Москва, 119991
Список литературы
- Agati G., Brunetti C., Fini A. et al. Are flavonoids effective antioxidants in plants? Twenty years of our investigation // Antioxidants. 2020. V. 9. № 11. P. 1098. https://doi.org/10.3390/antiox9111098
- Sharma P., Jha A. B., Dubey R. S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions // J. Botany. 2012. V. 2012. P. 681. https://doi.org/10.1155/2012/217037
- Coe E.H., Neuffer M. G., Hoisington D. A. The genetics of corn // Corn and Corn Improvement. Madison: Am. Society of Agronomy, 1988. P. 81–259. https://doi.org/10.2134/agronmonogr18.3ed.c3
- Huang H., Ullah F., Zhou D. X. et al. Mechanisms of ROS regulation of plant development and stress responses // Frontiers in Plant Science. 2019. V. 10. P. 440‒478. https://doi.org/10.3389/fpls.2019.00800
- Yan W., Li J., Lin X. et al. Changes in plant anthocyanin levels in response to abiotic stresses: A meta-analysis // Plant Biotechnol. Reports. 2022. V. 16. № 5. P. 497–508. https://doi.org/10.1007/S11816-022-00777-7
- Paauw M., Koes R., Quattrocchio F. M. Alteration of flavonoid pigmentation patterns during domestication of food crops // J. Experim. Botany. 2019. V. 70. № 15. P. 3719–3735. https://doi.org/10.1093/jxb/erz141
- Li G., Wang L., Yang J. et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes // Nature Genetics. 2021. V. 53. № 4. P. 574‒580. https://doi.org/10.1038/S41588-021-00808-Z
- Rabanus-Wallace M.T., Hackauf B., Mascher M. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential // Nature Genetics. 2021. V. 53. № 4. P. 564–573. https://doi.org/10.1038/s41588-021-00807-0
- Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology // Plant Physiology. 2001. V. 126. P. 485–493. https://doi.org/10.1104/pp.126.2.485
- Davies K.M., Albert N. W., Schwinn K. E. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning // Funct. Plant Biology. 2012. V. 39. № 8. P. 619–638. https://doi.org/10.1071/FP12195
- Pucker B., Selmar D. Biochemistry and molecular basis of intracellular flavonoid transport in plants // Plants. 2022. V. 11. № 7. P. 963. https://doi.org/10.3390/plants11070963/S1
- Buhrman K., Aravena-Calvo J., Ross Zaulich C. et al. Anthocyanic vacuolar inclusions: From biosynthesis to storage and possible applications // Frontiers in Chemistry. 2022. V. 10. https://doi.org/10.3389/fchem.2022.913324
- Petrussa E., Braidot E., Zancani M. et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses // Intern. J. Mol. Sciences. 2013. V. 14. № 7. P. 14950–14973. https://doi.org/10.3390/ijms140714950
- Mackon E., Jeazet Dongho, Epse Mackon G. C., Ma Y. et al. Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) caryopsis // Biomolecules. 2021. V. 11. № 3. https://doi.org/10.3390/biom11030394
- Zhu Q., Xie X., Xiang G. et al. In silico analysis of a MRP transporter gene reveals its possible role in anthocyanins or flavonoids transport in Oryza sativa // Am. J. Plant Sciences. 2013. V. 4. P. 555–560. https://doi.org/10.4236/ajps.2013.43072
- Li T., Zhang W., Yang H. et al. Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize // Scientific Reports. 2019. V. 9. № 1. P. 6023. https://doi.org/10.1038/s41598–018–37697-y
- Tan X., Li K., Wang Z. et al. A review of plant vacuoles: formation, located proteins, and functions // Plants. 2019. V. 8. № 9. https://doi.org/10.3390/plants8090327
- Zheng Y., Zhang H., Deng X. et al. The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells // Scientific Reports. 2017. V. 7. № 1. https://doi.org/10.1038/srep41245
- Henry R.J., Furtado A., Rangan P. Pathways of photosynthesis in non-leaf tissues // Biology. 2020. V. 9. № 12. https://doi.org/10.3390/biology9120438
- Legland D., Le T. D.Q., Alvarado C. et al. New growth-related features of wheat grain pericarp revealed by synchrotron-based X-ray micro-tomography and 3D reconstruction // Plants. 2023. V. 12. № 5. https://doi.org/10.3390/plants12051038
- Simkin A.J., Faralli M., Ramamoorthy S. et al. Photosynthesis in non-foliar tissues: implications for yield // The Plant J. 2020. V. 101. № 4. P. 1001–1015. https://doi.org/10.1111/tpj.14633
- Kong L.A., Xie Y., Sun M. Z. et al. Comparison of the photosynthetic characteristics in the pericarp and flag leaves during wheat (Triticum aestivum L.) caryopsis development // Photosynthetica. 2016. V. 54. № 1. P. 40–46. https://doi.org/10.1007/S11099–015–0153-y
- Li Y.B., Yan M., Cui D. Z. et al. Programmed degradation of pericarp cells in wheat grains depends on autophagy // Frontiers in Genetics. 2021. V. 12. https://doi.org/10.3389/fgene.2021.784545
- Grafi G., Singiri J. R. Cereal husks: Versatile roles in grain quality and seedling performance // Agronomy. 2022. V. 12. № 1. P. 172. https://doi.org/10.3390/agronomy12010172
- Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination // J. Forestry Research. 2020. V. 31. № 1. P. 1–12. https://doi.org/10.1007/s11676-019-01034-4
- Walker A.R., Davison P. A., Bolognesi-Winfield A.C. et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein // Plant Cell. 1999. V. 11. № 7. P. 1337–1349. https://doi.org/10.1105/tpc.11.7.1337
- Morohashi K., Grotewold E. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors // PLoS Genetics. 2009. V. 5, № 2. https://doi.org/10.1371/journal.pgen.1000396
- Morohashi K., Zhao M, Yang M. et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events // Plant Physiol. 2007. V. 145. № 3. P. 736–746. https://doi.org/10.1104/pp.107.104521
- Pesch M., Schultheiß I., Klopffleisch K. et al. TRANSPARENT TESTA GLABRA1 and GLABRA1 compete for binding to GLABRA3 in Arabidopsis // Plant Physiology. 2015. V. 168. № 2. P. 584–597. https://doi.org/10.1104/pp.15.00328
- Khlestkina E. The adaptive role of flavonoids: Emphasis on cereals // Cereal Res. Communications. 2013. V. 41. № 2. P. 185–198. https://doi.org/10.1556/crc.2013.0004
- Vaughan S.P., Baker J. M., Primavesi L. F. et al. Proanthocyanidin biosynthesis in the developing wheat seed coat investigated by chemical and RNA-Seq analysis // Plant Direct. 2022. V. 6. № 10. https://doi.org/10.1002/pld3.453
- Jende‐Strid B. Genetic control of flavonoid biosynthesis in barley // Hereditas. 1993. V. 119. № 2. P. 187–204. https://doi.org/10.1111/j.1601-5223.1993.00187.x
- Zykin P.A., Andreeva E. A., Lykholay A. N. et al. Anthocyanin composition and content in rye plants with different grain color // Molecules. 2018. V. 23. № 4. https://doi.org/10.3390/molecules23040948
- Dixon R.A., Sarnala S. Proanthocyanidin biosynthesis ‒ a matter of protection // Plant Physiology. 2020. V. 184. № 2. P. 579–591. https://doi.org/10.1104/pp.20.00973
- Himi E., Yamashita Y., Haruyama N. et al. Ant28 gene for proanthocyanidin synthesis encoding the R2R3-MYB domain protein (Hvmyb10) highly affects grain dormancy in barley // Euphytica. 2012. V. 188. № 1. P. 141–151. https://doi.org/10.1007/S10681-011-0552-5
- Himi E., Taketa S. Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy // Genome. 2015. V. 58. № 1. P. 43–53. https://doi.org/10.1139/gen-2014–0189
- Шоева О.Ю., Стрыгина К. В., Хлесткина Е. К. Гены, контролирующие синтез флавоноидных и меланиновых пигментов ячменя // Вавиловский журнал генетики и селекции. 2018. Т. 22. № 3. С. 333–342. https://doi.org/10.18699/VJ18.369
- Flint-Garcia S. A. Genetics and consequences of crop domestication // J. Agricultural and Food Chemistry. 2013. V. 61. № 35. P. 8267–8276. https://doi.org/10.1021/jf305511d
- Sun M., Corke H. Population genetics of colonizing success of weedy rye in Northern California // Theoretical and Applied Genetics. 1992. V. 83. № 3. P. 321–329. https://doi.org/10.1007/BF00224278
- Xu F., Tang J., Wang S. et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors // Nature Genetics. 2022. V. 54. № 12. P. 1972–1982. https://doi.org/10.1038/s41588-022-01240-7
- Skadhauge B., Thomsen K. K., Von Wettstein D. The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections // Hereditas. 1997. V. 126. № 2. P. 147–160. https://doi.org/10.1111/J.1601–5223.1997.00147.X
- Yonekura-Sakakibara K., Higashi Y., Nakabayashi R. The origin and evolution of plant flavonoid metabolism // Frontiers in Plant Science. 2019. V. 10. P. 943. https://doi.org/10.3389/fpls.2019.00943
- Pankin A., von Korff M. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare) // Current Opinion in Plant Biology. 2017. V. 36. P. 15–21. https://doi.org/10.1016/j.pbi.2016.12.001
- Alappat B., Alappat J. Anthocyanin pigments: Beyond aesthetics // Molecules. 2020. V. 25. № 23. https://doi.org/10.3390/molecules25235500
- Khoo H.E., Azlan A., Tang S. T., Lim S. M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits // Food and Nutrition Research. 2017. V. 61. № 1. https://doi.org/10.1080/16546628.2017.1361779
- Jia Y., Li B., Zhang Y. et al. Evolutionary dynamic analyses on monocot flavonoid 3′-hydroxylase gene family reveal evidence of plant-environment interaction // BMC Plant Biology. 2019. V. 19. № 1. P. 347. https://doi.org/10.1186/s12870-019-1947-z
- Jia Y., Selva C., Zhang Y. et al. Uncovering the evolutionary origin of blue anthocyanins in cereal grains // Plant J. 2020. V. 101. № 5. P. 1057–1074. https://doi.org/10.1111/tpj.14557
- Vikhorev A. V., Strygina K. V., Khlestkina E. K. Duplicated flavonoid 3’-hydroxylase and flavonoid 3ʹ,5ʹ-hydroxylase genes in barley genome // PeerJ. 2019. V. 2019. № 1. https://doi.org/10.7717/peerj.6266
- Khlestkina E.K., Shoeva O. Y. Intron loss in the chalcone-flavanone isomerase gene of rye // Mol. Breeding. 2014. V. 33. № 4. P. 953–959. https://doi.org/10.1007/s11032-013-0009-8
- van Tunen A. J., Koes R. E., Spelt C. E. et al. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes // EMBO J. 1988. V. 7. № 5. P. 1257–1263. https://doi.org/10.1002/j.1460–2075.1988.tb02939.x
- Häger K.P., Müller B., Wind C. et al. Evolution of legumin genes: Loss of an ancestral intron at the beginning of angiosperm diversification // FEBS Letters. 1996. V. 387. № 1. P. 94–98. https://doi.org/10.1016/0014-5793(96)00477-2
- Trapp S.C., Croteau R. B. Genomic organization of plant terpene synthases and molecular evolutionary implications // Genetics. 2001. V. 158. № 2. P. 811–832. https://doi.org/10.1093/genetics/158.2.811
- Jeffares D.C., Mourier T., Penny D. The biology of intron gain and loss // Trends in Genetics. 2006. V. 22. № 1. P. 16–22. https://doi.org/10.1016/j.tig.2005.10.006
- Ludwig S.R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region // Proc. Nat. Acad. Sci. U S A 1989. V. 86. № 18. P. 7092–7096. https://doi.org/10.1073/pnas.86.18.7092
- Paz-Ares J., Wienand U., Peterson P. A., Saedler H. Molecular cloning of the c locus of Zea mays: A locus regulating the anthocyanin pathway // EMBO J. 1986. V. 5. № 5. P. 829–833. https://doi.org/10.1002/j.1460-2075.1986.tb04291.x
- Goff S.A., Cone K. C., Fromm M. E. Identification of functional domains in the maize transcriptional activator C1: Comparison of wild-type and dominant inhibitor proteins // Genes and Development. 1991. V. 5. № 2. P. 298–309. https://doi.org/10.1101/gad.5.2.298
- Goff S.A., Cone K. C., Chandler V. L. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins // Genes and Development. 1992. V. 6. № 5. P. 864–875. https://doi.org/10.1101/gad.6.5.864
- Roth B.A., Goff S. A., Klein T. M., Fromm M. E. C1- and R-dependent expression of the maize Bz1 gene requires sequences with homology to mammalian myb and myc binding sites // Plant Cell. 1991. V. 3. № 3. P. 317–325. https://doi.org/10.1105/tpc.3.3.317
- Radicella J.P., Turks D., Chandler V. L. Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize // Plant Mol. Biology. 1991. V. 17. № 1. P. 127–130. https://doi.org/10.1007/BF00036813
- Selinger D.A., Chandler V. L. A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway // Plant Cell. 1999. V. 11. № 1. P. 5–14. https://doi.org/10.1105/tpc.11.1.5
- Zhang F., Gonzalez A., Zhao M. et al. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis // Development. 2003. V. 130. № 20. P. 4859–4869. https://doi.org/10.1242/dev.00681
- Gonzalez A., Zhao M., Leavitt J. M., Lloyd A. M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings // Plant J. 2008. V. 53. № 5. P. 814–827. https://doi.org/10.1111/j.1365-313X.2007.03373.x
- Baudry A., Heim M. A., Dubreucq B. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana // Plant J. 2004. V. 39. № 3. P. 366–380. https://doi.org/10.1111/j.1365-313X.2004.02138.x
- Payne C.T., Zhang F., Lloyd A. M. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1 // Genetics. 2000. V. 156. № 3. P. 1349–1362. https://doi.org/10.1093/genetics/156.3.1349
- Baudry A., Caboche M., Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana // Plant J. 2006. V. 46. № 5. P. 768–779. https://doi.org/10.1111/j.1365–313X.2006.02733.x
- Radicella J.P., Brown D., Tolar L. A., Chandler V. L. Allelic diversity of the maize B regulatory gene: Different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production // Genes and Development. 1992. V. 6. № 11. P. 2152–2164. https://doi.org/10.1101/gad.6.11.2152
- Albert N.W., Butelli E., Moss S. M.A. et al. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus // New Phytologist. 2021. V. 231. № 2. P. 849–863. https://doi.org/10.1111/nph.17142
- Walker E.L., Robbins T. P., Bureau T. E. et al. Transposon-mediated chromosomal rearrangements and gene duplications in the formation of the maize R-r complex // EMBO J. 1995. V. 14. № 10. P. 2350–2363. https://doi.org/10.1002/j.1460–2075.1995.tb07230.x
- Kermicle J. L. Somatic and meiotic instability of R-stippled, an aleurone spotting factor in maize // Genetics. 1970. V. 64. № 2. P. 247–258. https://doi.org/10.1093/genetics/64.2.247
- Robbins T.P., Walker E. L., Kermicle J. L. et al. Meiotic instability of the R-r complex arising from displaced intragenic exchange and intrachromosomal rearrangement // Genetics. 1991. V. 129. № 1. P. 271–283. https://doi.org/10.1093/genetics/129.1.271
- Harris L.J., Currie K., Chandler V. L. Large tandem duplication associated with a Mu2 insertion in Zea mays B-Peru gene // Plant Molecular Biology. 1994. V. 25. № 5. P. 817–828. https://doi.org/10.1007/BF00028876
- Selinger D.A., Chandler V. L. B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream // Plant Physiology. 2001. V. 125. № 3. P. 1363–1379. https://doi.org/10.1104/pp.125.3.1363
- Zimmermann I.M., Heim M. A., Weisshaar B., Uhrig J. F. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins // Plant J. 2004. V. 40. № 1. P. 22–34. https://doi.org/10.1111/j.1365-313X.2004.02183.x
- Strygina K.V., Börner A., Khlestkina E. K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone // BMC Plant Biology. 2017. V. 17. Suppl 1. P. 184. https://doi.org/10.1186/s12870-017-1122-3
- Zeven A. C. Wheats with purple and blue grains: a review // Euphytica. 1991. V. 56. № 3. P. 243–258. https://doi.org/10.1007/BF00042371
- Li N., Li S., Zhang K. et al. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum // PLoS One. 2017. V. 12. № 7. P. 1–13. https://doi.org/10.1371/journal.pone.0181116
- Liu X., Zhang M., Jiang X. et al. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat – Triticum boeoticum substitution line // Frontiers in Plant Science. 2021. V. 12. https://doi.org/10.3389/fpls.2021.762265
- Martis M.M., Zhou R., Haseneyer G. et al. Reticulate evolution of the rye genome // Plant Cell. 2013. V. 25. № 10. P. 3685–3698. https://doi.org/10.1105/tpc.113.114553
- Hanson M.A., Gaut B. S., Stec A. O. et al. Evolution of anthocyanin biosynthesis in maize kernels: The role of regulatory and enzymatic loci // Genetics. 1996. V. 143. № 3. P. 1395–1407. https://doi.org/10.1093/genetics/143.3.1395
- Petroni K., Pilu R., Tonelli C. Anthocyanins in corn: A wealth of genes for human health // Planta. 2014. V. 240. № 5. P. 901–911. https://doi.org/10.1007/S00425-014-2131-1
- Sweeney M.T., Thomson M. J., Pfeil B. E., McCouch S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice // Plant Cell. 2006. V. 18. № 2. P. 283–294. https://doi.org/10.1105/tpc.105.038430
- Himi E., Nisar A., Noda K. Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat // Genome. 2005. V. 48. № 4. P. 747–754. https://doi.org/10.1139/G05–026
- Himi E., Maekawa M., Miura H., Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat // Theoretical and Applied Genetics. 2011. V. 122. № 8. P. 1561–1576. https://doi.org/10.1007/s00122-011-1555-2
- Oikawa T., Maeda H., Oguchi T. et al. The birth of a black rice gene and its local spread by introgression // Plant Cell. 2015. V. 27. № 9. P. 2401–2414. https://doi.org/10.1105/tpc.15.00310
- Kim D.H., Yang J. H., Ha S. H. et al. An OsKala3, R2R3 MYB TF, is a common key player for black rice pericarp as main partner of an OsKala4, bHLH TF // Frontiers in Plant Science. 2021. V. 12. https://doi.org/10.3389/fpls.2021.765049
- Stetter M.G., Vidal-Villarejo M., Schmid K. J. Parallel seed color adaptation during multiple domestication attempts of an ancient new world grain // Mol. Biology and Evolution. 2020. V. 37. № 5. P. 1407–1419. https://doi.org/10.1093/molbev/msz304/5682418
- Tereshchenko O.Y., Arbuzova V. S., Khlestkina E. K. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes // J. Cereal Science. 2013. V. 57. № 1. P. 10–13. https://doi.org/10.1016/j.jcs.2012.09.010
- Tereshchenko O.Y., Gordeeva E. I., Arbuzova V. S. et al. The D genome carries a gene determining purple grain colour in wheat // Cereal Res. Communications. 2012. V. 40. № 3. P. 334–341. https://doi.org/10.1556/crc.40.2012.3.2
- Shoeva O.Y., Gordeeva E. I., Khlestkina E. K. The regulation of anthocyanin synthesis in the wheat pericarp // Molecules. 2014. V. 19. № 12. P. 20266–20279. https://doi.org/10.3390/molecules191220266
- Jiang W., Liu T., Nan W. et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat // J. Experimental Botany. 2018. V. 69. № 10. P. 2555–2567. https://doi.org/10.1093/jxb/ery101
- Zong Y., Xi X., Li S. et al. Allelic variation and transcriptional isoforms of wheat TaMYC1 gene regulating anthocyanin synthesis in pericarp // Frontiers in Plant Science. 2017. V. 8. https://doi.org/10.3389/fpls.2017.01645
- Shoeva O.Y., Mock H. P., Kukoeva T. V. et al. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare // PLoS One. 2016. V. 11. № 10. https://doi.org/10.1371/journal.pone.0163782
- Cockram J., White J., Zuluaga D. L. et al. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome // Proc. Nat. Acad. Sci. U S A. 2010. V. 107. № 50. P. 21611–21616. https://doi.org/10.1073/pnas.1010179107
- Gordeeva E.I., Glagoleva A. Y., Kukoeva T. V. et al. Purple-grained barley (Hordeum vulgare L.): Marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network // BMC Plant Biology. 2019. V. 19. Suppl 1. P. 52. https://doi.org/10.1186/s12870-019-1638-9
- Антропов В.И., Антропов В. Ф. Рожь – Secale L. // Культурная флора СССР. Т. 2. Хлебные злаки. Л.: Гос. изд-во совхозной и колхозной лит-ры, 1936. С. 3–95.
- Смирнов В.Г., Соснихина С. П. Генетика ржи. Л.: Изд-во Ленинградского ун-та, 1984. 264 с.
- de Vries J. N., Sybenga J. Chromosomal location of 17 monogenically inherited morphological markers in rye (Secale cereale L.) using the translocation tester set // Pflanzenzücht. 1984. V. 192. P. 177–139.
- Raviv B., Godwin J., Granot G., Grafi G. The dead can nurture: Novel insights into the function of dead organs enclosing embryos // Interna, J, Mol, Sciences. 2018. V. 19. № 8. https://doi.org/10.3390/ijms19082455
- Lascoux M., Glémin S., Savolainen O. Local adaptation in plants // eLS. 2016. P. 1–7. https://doi.org/10.1002/9780470015902.a0025270
- Dwivedi S.L., Mattoo A. K., Garg M. et al. Developing germplasm and promoting consumption of anthocyanin-rich grains for health benefits // Frontiers in Sustainable Food Systems. 2022. V. 6. https://doi.org/10.3389/fsufs.2022.867897
- Gordeeva E., Shoeva O., Mursalimov S. et al. Fine points of marker-assisted pyramiding of anthocyanin biosynthesis regulatory genes for the creation of black-grained bread wheat (Triticum aestivum L.) Lines // Agronomy. 2022. V. 12. № 12. https://doi.org/10.3390/agronomy12122934
- Casas M.I., Duarte S., Doseff A. I., Grotewold E. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop // Frontiers in Plant Science. 2014. V. 5. https://doi.org/10.3389/fpls.2014.00440
- Glagoleva A., Kukoeva T., Mursalimov S. et al. Effects of combining the genes controlling anthocyanin and melanin synthesis in the barley grain on pigment accumulation and plant development // Agronomy. 2022. V. 12. № 1. https://doi.org/10.3390/agronomy12010112
Дополнительные файлы
