Vegetation and climate changes in the north of the central Kamchatka depression in the late Holocene

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In order to study the vegetation history of the northern part of the Central Kamchatka Depression, a core Kich was obtained and studied by lithological, tephrochronological, palynological analyses and radiocarbon dating. Palynological data allowed us to identify the main stages in the vegetation and climate development over the past 3000 years. By the end of the cool period at ~2.5 cal. kyr BP, in the Kich River valley poplar forests were replaced by alder, willow and stone birch forests. About 1.9 cal. kyr BP, sedge-dominated mire was replaced by grass meadows as a result of a series of the Shiveluch volcano eruptions and climate changes. As climate became drier stone birch forests spread about 1.2 cal. kyr BP. Since 0.8 cal. kyr BP, the areas of coniferous forests increase, first with the spread of larch and later spruce.

作者简介

E. Mukhametshina

Institute of geography RAS; Geological institute RAS

编辑信件的主要联系方式.
Email: eomukhametshina@igras.ru
俄罗斯联邦, Moscow; Moscow

M. Shchekleina

Fersman Mineralogical Museum

Email: eomukhametshina@igras.ru
俄罗斯联邦, Moscow

A. Zakharov

Fersman Mineralogical Museum

Email: eomukhametshina@igras.ru
俄罗斯联邦, Moscow

参考

  1. Andreev A.A., Pevzner M.M. (2001). Vegetation dynamics of the lower reaches of Kamchatka River during last 6000 years. J. of Botany. V. 86. № 5. P. 119–124 (in Russ.).
  2. Andrén E., Klimaschewski A., Self A.E. et al. (2015). Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East). Global and Planetary Change. V. 134. P. 41–54. https://doi.org/ 10.1016/j.gloplacha.2015.02.013
  3. Blaauw M., Christen J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. V. 6. P. 457–474. https://doi.org/10.1214/11-BA618
  4. Braitseva O.A., Melekestsev I.V., Evteeva I.S. et al. (1968). Stratigrafiya chetvertichnykh otlozhenii i oledeneniya Kamchatki (Stratigraphy of Quaternary deposits and glaciation of Kamchatka). Moscow: Nauka (Publ.). 228 p. (in Russ.)
  5. Braitseva O.A., Ponomareva V.V., Sulerzhitsky L.D. et al. (1997). Holocene key-marker tephra layers in Kamchatka, Russia. Quat. Res. V. 47. Iss. 2. P. 125–139. https://doi.org/10.1006/qres.1996.1876
  6. Brooks S.J., Diekmann B., Jones V.J. et al. (2015). Holocene environmental change in Kamchatka: a synthesis. Global and Planetary Change. V. 134. P. 166–174. https://doi.org/10.1016/j.gloplacha.2015.09.004
  7. Dirksen V., Dirksen O., Diekmann B. (2013). Holocene vegetation dynamics and climate change in Kamchatka Peninsula, Russian Far East. Rev. of Palaeobotany and Palynology. V. 190. P. 48–65. https://doi.org/10.1016/j.revpalbo.2012.11.010
  8. Dirksen V.G., Uspenskaia O.N. (2006). The Holocene climate and vegetation changes in Eastern Kamchatka based on pollen, macrofossil and tephra data. Proceedings of 2nd Scientific Congress of East Asian Federation of Ecological Societies. EAFES, Niigata. P. 420.
  9. Egorova I.A. (1980). Palinologicheskaya kharakteristika vulkanogenno-osadochnykh otlozhenii v primenenii i stratigrafii. Vulkanicheskii tsentr: stroenie, dinamika, veshchestvo (Karymskaya struktura) (Palynological characteristics of volcanic-sedimentary deposits as applied to stratigraphy. Volcanic center: structure, dynamics, substance (Karym structure)). Moscow: Nauka (Publ.). P. 52–76. (in Russ.)
  10. Gill J.B. (1981). Orogenic andesites and plate tectonics. Berlin: Springer. 390 p.
  11. Grichuk V.P., Zaklinskaya E.D. (1948). Analiz iskopaemykh pyl’tsy i spor i ego primenenie v paleogeografii (Analysis of fossil pollen and spores and its application to paleogeography). Moscow: OGIZ, GEOGRAFGIZ (Publ.). 224 p. (in Russ.)
  12. Grimm E. (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences. V. 13. P. 13–35. https://doi.org/10.1016/0098-3004(87)90022-7
  13. Grimm E.C. (1990). TILIA and TILIA GRAPH. PC spreadsheet and graphics software for pollen data. In: INQUA, Working Group on Data-Handling Methods. Newsletter. № 4. P. 5–7.
  14. Heiri O., Lotter A.F., Lemcke G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments. Reproducibility and comparability of results. J. of Paleolimnology. V. 25. P. 101–110. http://dx.doi.org/10.1023/A:1008119611481
  15. Hoff U., Biskaborn B.K., Dirksen V.G. et al. (2015). Holocene Environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake. Global and Planetary Change. V. 134. P. 101–117. http://dx.doi.org/10.1016/j.gloplacha.2015.07.011
  16. IPNI – International Plant Names Index [Electronic data]. Access way: https://www.ipni.org/ (access date: 10.05.2024)
  17. Jarosevich E.J., Nelen J.A., Norberg J.A. (1980). Reference sample from electron microprobe analysis. Geostandards Newsletter. V. 4. P. 43–47. https://doi.org/10.1111/j.1751-908X.1980.tb00273.x
  18. Jochum K.P., Stoll B., Herwig K. et al. (2006). MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. V. 7. Iss. 2. P. 1–44. https://doi.org/10.1029/2005GC001060
  19. Klimaschewski A. (2010). Late Quaternary environmental change of Kamchatka. PhD thesis. Belfast: Queen’s University. 290 p.
  20. Khotinsky N.A. (1977). Golotsen Severnoi Evrazii: opyt transkontinental’noi korrelyatsii etapov razvitiya rastitel’nosti i klimata. K X Kongressu INQUA (Velikobritaniya, 1977) (Holocene of Northern Eurasia: experience of transcontinental correlation of stages of development of vegetation and climate. To the Xth Congress of INQUA (Great Britain, 1977)). Moscow: Nauka (Publ.). 200 p. (in Russ.)
  21. Kuehn K.A., Ohsowski B.M., Francoeur S.N. et al. (2011). Contributions of fungi to carbon flow and nutrient cycling from standing dead Typha angustifolia leaf litter in a temperate freshwater marsh. Limnol. Oceanogr. V. 56. Iss. 2. P. 529–539. https://doi.org/10.4319/lo.2011.56.2.0529
  22. Kuprina N.P. (1970). Stratigrafiya i istoriya osadkonakopleniya pleistotsenovykh otlozhenii Tsentral’noi Kamchatki (Stratigraphy and sedimentation history of Pleistocene deposits of Central Kamchatka). Trudy GIN AN SSSR. V. 216. 148 p. (in Russ.)
  23. Le Maitre R.W. (Ed.). (2005). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.
  24. Lowe D.J. (2011). Tephrochronology and its application: a review. Quat. Geochronology. V. 6. Iss. 2. P. 107–153. https://doi.org/10.1016/j.quageo.2010.08.003
  25. Lozhkin A.V., Slobodin S.B. (2012). The Ushki site as a unique archaeological monument of the North of the Far East. Vestnik DVO RAN. № 1. P. 84–91. (in Russ.)
  26. Mazei N.G., Novenko E.Yu. (2021). The use of propionic anhydride in the sample preparation for pollen analysis. Nature Conservation Research. Zapovednaya nauka. V. 6. № 3. P. 110–112. https://dx.doi.org/10.24189/ncr.2021.036
  27. Meyer H., Chapligin B., Hoff U. et al. (2014). Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts Lake, Central Kamchatka, Russia. Global and Planetary Change. V. 134. P. 118–128. https://doi.org/10.1016/j.gloplacha.2014.04.008
  28. Nazarova L., Bleibtreu A., Hoff U. et al. (2017). Changes in temperature and water depth of a small mountain lake during the past 3000 years in Central Kamchatka reflected by a chironomid record. Quat. Int. V. 447. P. 1–13. https://doi.org/10.1016/j.quaint.2016.10.008
  29. Nazarova L., de Hoog V., Hoff U. et al. (2013). Late Holocene climate and environmental changes in Kamchatka inferred from the subfossil chironomid record. Quat. Sci. Rev. V. 67. P. 81–92. https://doi.org/10.1016/j.quascirev.2013.01.018
  30. Neustadt M.I. (1936). On some questions arising in connection with the study of the peat bogs of Kamchatka. Bulletin MOIP. Otdelenie biologii. V. 45. № 2. P. 159–170. (in Russ.)
  31. Neshataeva V.Yu. (2009). Rastitel’nost’ poluostrova Kamchatka (Vegetation of the Kamchatka Peninsula). Moscow: KMK (Publ.). 537 p. (in Russ.)
  32. Pendea I.F., Ponomareva V., Bourgeois J. et al. (2017). Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia). Quat. Sci. Rev. V. 157. P. 14–28. https://doi.org/10.1016/j.quascirev.2016.11.035
  33. Ponomareva V.V., Portnyagin M.V., Pevzner M.M. et al. (2015). Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass. Int. J. of Earth Sci. V. 104. P. 1459–1482. https://doi.org/10.1007/s00531-015-1156-4.
  34. Ponomareva V.V., Portnyagin M.V., Pendea I.F. et al. (2017). A full Holocene tephrochronology for the Kamchatsky Peninsula region: applications from Kamchatka to north America. Quat. Sci. Rev. V. 168. P. 101–122. https://doi.org/10.1016/j.quascirev.2017.04.031
  35. Portnyagin M., Ponomareva V., Zelenin E. et al. (2020). TephraKam: geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (northwestern Pacific). Earth System Science Data. V. 12. № 1. P. 469–486. https://doi.org/10.5194/essd-12-469-2020
  36. Reimer P., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. V. 62. Iss. 4. P. 1–33. https://doi.org/10.1017/RDC.2020.41
  37. Self A.E., Klimaschewski A., Solovieva N. et al. (2015). The relative influences of climate and volcanic activity on Holocene Lake. Global and Planetary Change. V. 134. P. 67–81. https://doi.org/10.1016/j.gloplacha.2015.06.012
  38. Skiba L.A. (1975). Istoriya razvitiya rastitel’nosti Kamchatki v pozdnem kainozoe (History of the development of vegetation in Kamchatka in the late Cenozoic). Moscow: Nauka (Publ.). 72 p. (in Russ.)
  39. Stockmarr J. (1971). Tablets with spores used in Absolute Pollen Analysis. Pollen et spores. V. 13. P. 615–621.
  40. Weather and Climate. Weather of the Klyuchi 2004–2020. Reference and information portal. [Electronic data]. Access way: http://www.pogodaiklimat.ru/climate/32389.htm (Access date: 10.12.2020).
  41. Zaharihina L.V. (2014). The rate of Holocene peat accumulation in Kamchatka. Soil science. № 6. P. 670–676. (in Russ.)
  42. Zelenin E., Gurinov A., Garipova S., Zakharov A. (2023). Geomorphology of the Central Kamchatka Depression, the Kamchatka Peninsula, NE Pacific. J. of Maps. V. 19. № 1. 2252006. https://doi.org/10.1080/17445647.2023.2252006

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The position of the Kich core and the previously studied by other palynologists Holocene sections (1-11) of the central and northern parts of the Peninsula (а) and the position of the Kich section on the satellite image (б) and topographic map (в). 1 – Olive-backed Lake (Self et al., 2015); 2 – Krutoberegovo (Pendea et al., 2017); 3 – Nedostupny Yar; 4 – Bol’shoi Yar; 5 – Krutoi Yar; 6 – Polovinka Yar (sites 3–6: Braitseva et al., 1968); 7 – Ushki (Lozhkin, Slobodin, 2012); 8 – Kirganinskaya Tundra (Khotinsky, 1977); 9 – Stolbovaya (Dirksen et al., 2013); 10 – Cherny Yar (Andreev, Pevzner, 2001); 11 – Two-Yurts Lake (Hoff et al., 2015).

下载 (1MB)
3. Fig. 2. The lithology of the Kich core and its age-depth model. 1–2 – medium (1) and highly (2) decomposed peat; 3 – peaty loam; 4 – dark, almost black, peat interlayer; 5 –different sizes tephra in the peat that does not form visible interlayers; tephra interlayers: 6 – fine grained light-gray, 7 – fine-grained peach colour, 8 – coarse sand tephra of “salt and pepper” colour; 9 – organic inclusions; 10 – lapilli. On the age-depth model, the central dashed line means the average age values, shades of gray show the probability decreasing with distance from the average, gray dashed lines limit the range of 95% probability. Gray horizontal stripes show the depths of the tephra horizons. ЛПЗ mean local pollen zones (see fig. 5).

下载 (609KB)
4. Fig. 3. The core Kich from depths of 1–1.5 m. Peat with tephra layers.

下载 (992KB)
5. Fig. 4. Composition of glasses from tephra of the Kich core and from proximal pyroclastic deposits of selected volcanoes. Composition of proximal glasses younger than 3 ka according to the TephraKam database (Portnyagin et al., 2020). Boundaries of low-K, medium-K and high-K fields according to Gill (1981). Boundaries of basaltic andesite, andesite, dacite and rhyolite fields according to Le Maitre et al. (2005). 1 – Kich; 2 – Ksudach; 3 – Klyuchevskoi; 4 – Shiveluch.

下载 (163KB)
6. Fig. 5. Pollen percentages diagram of Kich core, north of Central Kamchatka depression, Kamchatka Peninsula. ЛПЗ mean Local Pollen Assemblage Zones. Empty curves represent 10× exaggeration. Climatic intervals: 1 – cooler, 2 – warmer, 3 – wetter, 4 – drier; 5 – tephra layers.

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024