The vegetation cover response in the eastern Sayan foothills to the Holocene climate extremes (the Bolshoye peat bog case study)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Article provides the results of palaeoecological reconstruction of vegetation cover changes and climatic conditions at the foot of the Eastern Sayan northwestern macroslope over the past 6600 years. The results are based on radiocarbon AMS dating, pollen, macrofossils, NPP, macrocharcoal and testate amoebae analyses of peat deposits from Bolshoe bog situated on the Yenisei River right bank. It was established that the waterlogging process was initiated by the pyrogenic factor. During the last approximately 6000 cal. a BP dark coniferous forests with a dominant position of Pinus sibirica were common in the foothills. The change in climatic conditions towards decreased moisture availability 4050–3600 cal. a BP contributed to the lower border of dark conifers rise and the strengthening of forest-steppe communities with Betula sect. Albae. This period is characterized by the most dramatic transformations. Less prolonged periods of forest lightening occurred in 3170–3080, 1850–1720, 490–400 and 310–220 cal. a BP, when the taiga and cold deciduous forest biomes were of almost equal importance. The most significant expansion of the dark conifers range began 1600 cal. a BP and reached a maximum 1350–1230 cal. a BP, which can be correlated with Dark Ages Cold Period. Based on the macrocharcoal analysis results six stages of increased fire activity were identified: 6500–6300, 4300–3600 (includes 4 fire episodes, characterized by the shortest fire intervals), 3400–2800, 1800–1550, 1200–1000, and from 150 cal. a BP to present. Based on a multy-proxy analysis, periods of increased moisture were established: 6300–5320, 4700–4200, 3080–2900, 2820–2390, 1720–1230, 400–310 and 130–70 cal. a BP. The decreased moisture was characteristic of the intervals 5320–4960, 4050–3600, 2390–2220, 1000–700 cal. a BP.

Sobre autores

A. Grenaderova

Siberian Federal University, Institute of Ecology and Geography

Autor responsável pela correspondência
Email: grenaderova-anna@mail.ru
Rússia, Krasnoyarsk

A. Mikhailova

Siberian Federal University, Institute of Ecology and Geography

Email: grenaderova-anna@mail.ru
Rússia, Krasnoyarsk

I. Kurina

Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the RAS

Email: grenaderova-anna@mail.ru
Rússia, Tomsk

O. Podobueva

Siberian Federal University, Institute of Ecology and Geography

Email: grenaderova-anna@mail.ru
Rússia, Krasnoyarsk

Bibliografia

  1. Amesbury M.J., Mallon G., Charman D.J. et al. (2013). Statistical testing of a new testate amoeba-based transfer function for water-table depth reconstruction on ombrotrophic peatlands in north-eastern Canada and Maine, United States. J. of Quat. Sci. V. 28. Iss. 1. P. 27–39. https://doi.org/10.1002/jqs.2584
  2. Amesbury M.J., Swindles G.T., Bobrov A. et al. (2016). Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quat. Sci. Rev. V. 152. P. 132–151. https://doi.org/10.1016/j.quascirev.2016.09.024
  3. Antipova E.M. (2003). Flora severnyh lesostepei Srednei Sibiri (Flora of the northern forest-steppes of Central Siberia). Krasnoyarsk: RIO KGPU (Publ.). 464 p. (in Russ.).
  4. Arzhannikov S.G., Gladkov A.S., Semenov R.M. (2004). Late Quaternary geodynamics and tectonic activity within the fault system (southwestern Siberian Platform). Geol. Geofiz. V. 45. № 4. P. 430–442. (in Russ.).
  5. Berger A., Loutre M.F. (1991). Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. V. 10. Iss. 4. P. 297–317. https://doi.org/10.1016/0277-3791(91)90033-q
  6. Berzin N.A. (1967). Zona Glavnogo razloma Vostochnogo Sayana (Eastern Sayan Main Fault Zone). Moscow: Nauka (Publ.). 147 p. (in Russ.).
  7. Beug H.-J. (2004). Leitfaden der Pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Munich: Publisher Verlag Friedrich Pfeil. 542 p.
  8. Bezrukova E.V., Vershinin K.E., Letunova P.P. et al. (2004). Vegetation of the highlands of the Eastern Sayan in the late Holocene according to the study of peat deposits. Botanicheskii Zhurnal. № 2. P. 221–232. (in Russ.).
  9. Bezrukova E.V., Kulagina N.V., Volchatova Е.V. et al. (2021). Postglacial Vegetation and Climate History of the Oka Plateau (East Sayan Mountains, South Siberia). Doklady Earth Sciences. V. 496. № 2. P. 182–184. https://doi.org/10.1134/S1028334X21020045
  10. Bezrukova E.V., Kulagina N.V., ReshetovaS.A. et al. (2022). Environment of the Oka Plateau (East Sayan Mountains) in the Late Glacial and Holocene: a Case Study of a Complex Record From the Lake Khikushka Sediments. Geomorfologiya. V. 53. № 3. P. 61–73. https://doi.org/10.31857/S043542812203004X(in Russ.).
  11. Blaauw M. (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology. V. 5. № 5. P. 512–518. https://doi.org/10.1016/j.quageo.2010.01.002
  12. Blyakharchuk T.A. (2011). Change of vegetation and climate of Western Sayan mountains and its interconnection with development of archeological cultures of area during second half of the holocene according to spore-pollen data of peat deposits. Vestnik Tomskogo gosudarstvennogo universiteta. № 351. P. 145–151. (in Russ.)
  13. Blyakharchuk T.A., Kurina I.V. (2021). Late Holocene environmental and climatic changes in the Western Sayan Mountains based on high-resolution muliproxy data. Boreas. V. 50. P. 919–934. https://doi.org/ 10.1111/bor.12493
  14. Blyakharchuk T.A., Pupysheva M.A. (2022). Dynamics of Vegetation and Fires in GornayaShoriya (Northern Altai Mountains) in the Late Holocene According to Palynological and Charcoal Research into the MalyLabysh Mire. Sibirskiy ekologicheskiy zhurnal. V. 29. № 2. P. 133–146. (in Russ.) https://doi.org/10.15372/SEJ20220202
  15. Borisova O.K., Panin A.V. (2019). Multicentennial Climatic Changes In The Tere-Khol Basin, Southern Siberia, During The Late Holocene. Geography Environment Sustainability. V. 12. № 2. P. 148–161. https://doi.org/10.24057/2071-9388-2018-64
  16. Chambers F.M., Beilman D.W., Yu Z. (2010). Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat. V. 7. Iss. 07. P. 1–10.
  17. Chernova N.A. (2006). Bolota khrebta Ergaki (Zapadnyi Sayan) (Swamps of the Ergaki ridge (Western Sayan)). PhD thesis. Tomsk: TSU (Publ.). 19 p. (in Russ.).
  18. Chernykh D.V., Zolotov D.V., Yamskikh G.Y. et al. (2014) Postglacial environmental change in the valley of Malye Chily River (the basin of Lake Teletskoye), northeastern Russian Altai. Physical Geography. V. 35. Iss. 5. P. 390–410. https://doi.org/10.1080/02723646.2014.929881
  19. Chernykh D.V., Zolotov D.V., Yamskikh G.Yu. et al. (2014). New data on the Holocene evolution of landscapes in the Lake Teletskoye basin. Izvestiya Russkogo geograficheskogo obshhestva. V. 146. Iss. 1. P. 34–42. (in Russ.)
  20. Churakova-Sidorova O.V., Myglan V.S., Fonti M.V. et al. (2022). Modern aridity in the Altai-Sayan mountain range derived from multiple millennial proxies. Sci. Rep. V. 12. № 7752. https://doi.org/10.1038/s41598-022-11299-1
  21. Clark J.S. (1988). Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling. Quat. Res. V. 30. Iss. 1. P. 67–80. https://doi.org/10.1016/0033-5894(88)90088-9
  22. Clark J.S., Lynch J.A., Stocks B.J. et al. (1998). Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene. V. 8. Iss. 1. P. 19–29. https://doi.org/10.1191/095968398672501165
  23. Columbu A., Zhornyak L.V., Zanchetta G. (2023). A mid-Holocene stalagmite multiproxy record from southern Siberia (Krasnoyarsk, Russia) linked to the Siberian High patterns. Quat. Sci. Rev. V. 320. P. 108355. https://doi.org/10.1016/j.quascirev.2023.108355
  24. Decloitre P.L. (1979). Le genre Centropyxis II. Arch. Protistenk. V. 121. P. 162–192. https://doi.org/10.1016/s0003-9365(79)80014-7
  25. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2021 god (Report on climate features in the Russian Federation for 2021) (2022) Moscow: Roshydromet (Publ.). 104 p. (in Russ.)
  26. Dombrovskaya A.V., Koreneva M.M., Turemnov S.N. (1959). Atlas rastitel’nyh ostatkov, vstrechajushhihsja v torfe (Atlas of plant residues found in peat). Moscow-Leningrad: Gosjenergoizdat (Publ.). 137 p. (in Russ.)
  27. Dyakonov K.N., NovenkoE.Yu., MazeiN.G. et al. (2020). The Age of Peatlands and Peatland Formation Stages in Polesie Landscapes of the East European Plain. Doklady Earth Sciences. V. 492. P. 464–470. https://doi.org/10.1134/S1028334X20060069 (in Russ.).
  28. Eichler A., Tinner W., Brütsch S. et al. (2011). An ice-core based history of Siberian Forest fires since AD 1250. Quat. Sci. Rev. V. 30. № 9–10. P. 1027–1034. https://doi.org/10.1016/j.quascirev.2011.02.007
  29. Farber S.K. (2012). Impact of fires on forests in Eastern Siberia. Lesnaya taksatsiya i lesoustroistvo. № 1 (47). P. 131–141. (in Russ.)
  30. FSBI “Central Siberian UGMS” – official site [Electronic data]. Access way: http://meteo.krasnoyarsk.ru/ (access date: 17.02.2022).
  31. Furyaev V.V. (1996). Rol’ pozharov v protsesse lesoobrazovaniya (The role of fires in the process of forest formation). Novosibirsk: Nauka (Publ.). 253 p. (in Russ.)
  32. Geltser Yu.G., Korganova G.A., Alekseev D.A. (1985). Prakticheskoe rukovodstvo po identifikatsii pochvennyh testatsii (A Practical Guide to Soil Test Identification). Moscow: MGU (Publ.). 84 p. (in Russ.)
  33. GOST 11306-2013. (2019). Torf i produkty ego pererabotki. Metody opredeleniya zol’nosti (Peat and products of its processing. Methods for determination of ash content). Moscow: Standartinform (Publ.). 6 p. (in Russ.)
  34. Grenaderova A.V., Mandryka P.V., Wang Xiaokun et al. (2021). Comprehensive Archaeological and Palaeoecological Studies of the Holocene Chronosequence in the Southern Taiga of the Middle Yenisei. Stratumplus. Arkheologiya i kul’turnaya antropologiya. № 6. P. 299–313. https://doi.org/10.55086/sp216299313 (in Russ.)
  35. Grenaderova A.V., Rodionova A.B., Miteva J.S. et al. (2020). Holocene paleovegetation reconstruction of the Eastern Sayan mountain peatlands (north-west macroslope) using a multi-proxy analysis. In: 1st International IALE-Russia online conference “Landscape Science and Landscape Ecology: Considering Responses to Global Challenges”. P. 103.
  36. Grenaderova A.V., Sharaphutdinov R.A. (2005). Rekonstruktsiya ekologicheskikh uslovii pozdnego golotsena v doline r. Oya (Reconstruction of palaeoecological conditions in the valley of Oya river in late Holocene). In: Gornye ekosistemy Juzhnoi Sibiri: izuchenie, okhrana i ratsional’noe prirodopol’zovanie: materialy I mezhregional’noi nauchno-prakticheskoi konferentsii, posvyashhennoi 5-letiyu organizatsii Tigirekskogo zapovednika. Trudy GPZ “Tigirekskii”. V. 1. Barnaul: Altaiskie stranitsy (Publ.). P. 141–146. (in Russ.)
  37. Grichuk V.P., Zaklinskaya E.D. (1948). Analiz iskopaemykh pyl’tsy i spor i ego primenenie v paleogeografii (Analysis of fossil pollen and spores and its application to paleogeography). Moscow: Geografgiz (Publ.). 224 p. (in Russ.)
  38. Helama S., Jones P.D., Briffa K.R. (2017). Dark Ages Cold Period: A literature review and directions for future research. The Holocene. V. 27. Iss. 10. P. 1600–1606. https://doi.org/10.1177/0959683617693898
  39. Higuera P.E. (2009). CharAnalysis 0.9: Diagnostic and analytical tools for sediment-charcoal analysis: user’s guide. Bozeman, MT, USA: Montana State University. 27 p.
  40. Ivanov K.E. (1975). Vodoobmen v bolotnykh landshaftakh (Water exchange in swamp landscapes). Leningrad: Gidrometeoizdat (Publ.). 280 p. (in Russ.)
  41. Kac N.Ja., Kac S.V., Skobeeva E.I. (1977). Atlas rastitel’nyh ostatkov v torfah (Atlas of plant residues in peats). Moscow: Nedra (Publ.). 371 p. (in Russ.)
  42. Kanitskaya L.V. (2013). Lesnaya pirologiya (Forest pyrology). Irkutsk: BSU (Publ.). 206 p. (in Russ.)
  43. Khotinsky N.A. (1977). Golotsen Severnoi Evrazii: opyt transkontinental’noi korrelyatsii etapov razvitiya rastitel’nosti i klimata (Holocene of Northern Eurasia: Experience of transcontinental correlation of stages of development of vegetation and climate). Moscow: Nauka (Publ.). 197 p. (in Russ.)
  44. Korotkov I.A. (1994). Lesorastitel’noe raionirovanie Rossii i respublik byvshego SSSR (Forest zoning of Russia and the republics of the former USSR). In: Uglerod v ekosistemah lesov i bolot Rossii. Krasnoyarsk: Computing Center SO RAN (Publ.). P. 29–47. (in Russ.)
  45. Koshkarov A.D., Koshkarova V.L. (2016). Reconstruction of the transformation of the species structure of vegetation types in the Turan-Uyuk depression (south-eastern part of the Western Sayan) under the influence of global climate change. In: Ekosistemy Tsentral’noi Azii: issledovanie, sokhranenie, ratsional’noe ispol’zovanie. Materialy XIII Mezhdunarodnogo simpoziuma. Kyzyl: TuvSU (Publ.). P. 198–202. (in Russ.)
  46. Koshkarov A.D., Koshkarova V.L., Nazimova D.I. (2021). Centuries-old climatic trends of transformation of the siberian stone pine forests in different forest vegetation zones of the Western Sayan Mountains. Sibirskii lesnoi zhurnal. № 2. P. 3–16. (in Russ.). https://doi.org/10.15372/SJFS20210201
  47. Kozhevnikov Yu.P. (1986). Sosudistye rasteniya (Vascular plants). In: Gornye fitotsenoticheskie sistemy Subarktiki. Leningrad: Nauka (Publ.). P. 45–76. (in Russ.)
  48. Krasnoborov I.M. (Ed.). (1988). Flora Sibiri. Lycopodiaceae – Hydrocharitaceae (Flora of Siberia. Lycopodiaceae – Hydrocharitaceae). Novosibirsk: Nauka. Sib. Otdelenie (Publ.). 200 p. (in Russ.)
  49. Kuhry P. (1997). The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Review of Palaeobotany and Palynology. V. 96. Iss. 1-2. P. 183–224. https://doi.org/10.1016/S0034-6667(96)00018-8
  50. Kulikova G.G. (1974). Kratkoe posobie k botanicheskomu analizu torfa (A short guide to botanical analysis of peat). Moscow: MSU (Publ.). 94 p. (in Russ.)
  51. Kupriyanov D.A., Novenko E.Yu. (2021). Reconstruction of the Holocene forest fires history in the southern part of the Mordovian state natural reserve based on the macroacharcoal analysis of the peat. Proceedings of the Mordovia State Nature Reserve. Vol. 3. P. 176–192. (in Russ.)
  52. Kuprijanova L.A., Aleshina L.A. (1972). Pyl’tsa i spory rastenii flory SSSR (Pollen and spores of plants of the flora of the USSR). V. 1. Leningrad: Nauka (Publ.). 171 p. (in Russ.)
  53. Kuprijanova L.A., Aleshina L.A. (1978). Pyl’ca dvudol’nykh rastenii flory Evropeiskoi chasti SSSR. Lamiaceae, Zygophyllaceae (Pollen of dicotyledonous plants of the flora of the European part of the USSR. Lamiaceae, Zygophyllaceae). Leningrad: Nauka (Publ.). 183 p. (in Russ.)
  54. Kurina I.V., Li H. (2019). Why do testate amoeba optima related to water table depth vary? Microb. Ecol. V. 77. P. 37–55. https://doi.org/10.1007/s00248-018-1202-4
  55. Kurina I.V., Li H., Barashkov D.R. (2020). Use of testate amoebae to infer paleohydrology during fen and fen-bog transition stages of ombrotrophic mire development. J. Paleolimnol. V. 63. P. 147–158. https://doi.org/10.1007/s10933-019-00107-y
  56. Kurina I.V., Veretennikova E.E., Il’ina A.A. et al. (2023). Multi-proxy climate and environmental records from a Holocene eutrophic mire, southern taiga subzone, West Siberia. Boreas. V. 52. P. 223–239. http://doi.org/10.1111/bor.12604
  57. Largin I.F. (Ed.). (1977). Torfyanye mestorozhdeniya i ikh razvedka (rukovodstva po laboratorno-prakticheskim zanyatiyam) (Peat deposits and their exploration (guides for laboratory and practical exercises)). Moscow: Nedra (Publ.). 264 p. (in Russ.)
  58. MacArthur R.H. (1957). On the relative abundance of bird species. Proc. Natl. Acad. Sci. V. 43. № 3. P. 293–295. https://doi.org/10.1073/pnas.43.3.293
  59. Mazei Yu.A., Tsyganov A.N. (2006). Presnovodnye rakovinnye ameby (Freshwater testate amoebas). Moscow: Tovarishchestvo nauchnykh izdanii KMK (Publ.). 300 p. (in Russ.)
  60. Mikhailova A.B., Grenaderova A.V., Kurina I.V. et al. (2021). Holocene vegetation and hydroclimate changes in the Kansk forest steppe, Yenisei River Basin, East Siberia. Boreas. V. 50. P. 948–966. https://doi.org/10.1111/bor.12542
  61. Mironycheva-Tokareva N.P., Kosykh N.P., Vishnykova E.K. (2013). Production and destruction processes in peatland ecosystems of Vasyugan region. Dinamika okruzhayushchei sredy i global’nye izmeneniya klimata. V. 4. № 1. P. 1–9. (in Russ.). https://doi.org/10.17816/edgcc411-9
  62. Moberg A., Sonechkin D.M., Holmgren K. et al. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature. V. 433. P. 613–617. https://doi.org/10.1038/nature03265
  63. Montoya E., Rull V., van Geel B. (2010). Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 297. Iss. 1. P. 169–183. https://doi.org/10.1016/j.palaeo.2010.07.026
  64. Moore P.D., Webb J.A., Collinsom M.E. (1991). Pollen analysis. Oxford: blackwell scientific publications. 216 p.
  65. Muldiyarov E.Ya., Chernova N.A. (2003). O bolotakh gornogo massiva Ergaki (About the swamps of the Ergaki mountain range). In: Stat’i po materialam mezhregional’nogo ekologicheskogo seminara “Kompleksnye ekologicheskie issledovaniya landshaftov Sibiri”. Tomsk: Tomskii gosudarstvennyi universitet (Publ.). P. 171–174. (in Russ.).
  66. Myglan V.S., Oidupaa O.Ch., Vaganov E.A. (2012). A 2367-Year Tree-Ring Chronology for the Altai–Sayan Region (Mongun-Taiga Mountain Massif). Arkheologiya, etnografiya i antropologiya Evrazii. V. 3. № 53. P. 76–83. (in Russ.). https://doi.org/10.1016/j.aeae.2012.11.009
  67. Nikolaev V.A., Chernov A.F. (1988). Rel’ef Altae-Sayanskoi gornoi oblasti (Relief of the Altai-Sayan mountain region). Novosibirsk: Nauka (Publ.). 204 p. (in Russ.)
  68. Novenko E.Yu., Tsyganov A.N., Babeshko K.V. et al. (2019). Climatic moisture conditions in the north-west of the Mid-Russian Upland during the Holocene. Geography, Environment, Sustainability. V. 12. № 4. P. 188–202. https://doi.org/10.24057/2071-9388-2018-62
  69. Novenko E.Yu. (2021). Landscape and climate dynamics in Central and Eastern Europe during the Holocene – assessment of future environmental changes. Geomorfologiya. V. 52. № 3. P. 24–47. (in Russ.). https://doi.org/10.31857/S0435428121030093
  70. Novenko E.Yu., Mazei N.G., Kupriyanov D.A. et al. (2022). Vegetation changes in Yenisei Siberia over the last 4700 years: new palaeoecological data from Igarka area; Krasnoyarsk Region. Geomorfologiya. V. 53. № 3. P. 51–60. (in Russ.). https://doi.org/10.31857/S0435428122030129
  71. PAGES 2k Consortium. (2013). Continental-scale temperature variability during the past two millennia. Nat. Geosci. V. 6. P. 339–346. https://doi.org/10.1038/ngeo1797
  72. Payne R.J., Mitchell E. (2007). Ecology of testate amoebae from mires in the central Rhodope Mountains, Greece and development of a transfer function for palaeohydrological reconstruction. Protist. V. 158. Iss. 2. P. 159–171. https://doi.org/10.1016/j.protis.2006.11.003
  73. Platonov G.M. (1964). Bolota lesostepi Srednei Sibiri (Forest-steppe swamps of Central Siberia). Moscow: Nauka (Publ.). 116 p. (in Russ.).
  74. Platonov G.M. (1965). Bolota predgorii Zapadnogo Sayana (Swamps of the foothills of the Western Sayan). In: Osobennosti bolotoobrazovaniya v nekotorykh lesnykh i predgornykh raionakh Sibiri i Dal’nego Vostoka. Moscow: Nauka (Publ.). P. 35–46. (in Russ.)
  75. Prager A, Theuerkauf M, Couwenberg J. et al. (2012). Pollen and non-pollen palynomorphs as tools for identifying alder carr deposits: A surface sample study from NE-Germany. Review of Palaeobotany and Palynology. V. 186. P. 38–57. https://doi.org/10.1016/j.revpalbo.2012.07.006
  76. Reimer P.J., Austin W.E.N., Bard E. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. V. 62. Iss. 4. P. 725–757. https://doi.org/10.1017/rdc.2020.41
  77. Revelles J., Burjachs F., van Geel B. (2016). Pollen and non-pollen palynomorphs from the Early Neolithic settlement of La Draga (Girona, Spain). Review of Palaeobotany and Palynology. V. 225. P. 1–20. https://doi.org/10.1016/j.revpalbo.2015.11.001
  78. Rodionova A.B., Grenaderova A.V. (2018). Peatland development and paleoclimate records from the Holocene peat archive in the foothills of the Eastern Sayan Mountains. IOP Conference Series: Earth and Environmental Science. V. 138. 012014. https://doi.org/ 10.1088/1755-1315/138/1/012014
  79. Romanov F.N., Naidich E.M. (1950). Materialy marshrutnoi razvedki torfyanogo mestorozhdeniya “Bolshoye” Irbeiskogo raiona, Krasnoyarskogo kraya (KZ No 54): geologicheskii otchet (Materials of route exploration of the “Bolshoye” peat deposit, Irbeysky district, Krasnoyarsk region (KZ No 54): geological report). Leningrad: ROSTORFRAZVEDKA (Publ.). 19 p. (in Russ.)
  80. Savina L.N. (1976). Noveishaya istoriya lesov Zapadnogo Sayana (po dannym sporovo-pyl’tsevogo analiza pochv) [Recent history of the forests of Western Sayan (according to spore-pollen analysis of soils)]. Novosibirsk: Nauka (Publ.). 157 p. (in Russ.)
  81. Sedaeva M.I., Ekart A.K., Stepanov N.V.et al. (2022). Characteristics of isolated Tilia nasczokinii Stepanov (Tiliaceae) populations near Krasnoyarsk. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. № 57. P. 28–45. https://doi.org/10.17223/19988591/57/2 (in Russ.).
  82. Sergeev G.M. (1971). O strovnii lesostepi i podtaiga Prieniseiskoi Sibiri (Island forest-steppes and sub-boreal forests of the Yenisei Siberia). Irkutsk: Vostochno-Sibirskoe knizhnoe izdatel’stvo (Publ.). 264 p. (in Russ.)
  83. Shnitnikov A.V. (1957). Variability of the general humidity of the continents of the Northern Hemisphere. Zapiski Geograficheskogo obshhestva SSSR. V. 16. 337 p. (in Russ.)
  84. Shumilovskikh L.S., Schlütz F., Achterberg I. et al. (2015). Non-Pollen Palynomorphs from Mid-Holocene Peat of the Raised Bog Borsteler Moor (Lower Saxony, Germany). Studia Quaternaria. V. 32. № 1. P. 5–18. https://doi.org/10.1515/squa-2015-0001
  85. Shumilovskikh L.S., van Geel B. (2020). Non-pollen palynomorphs. Henry A.G. (Ed.). In: Handbook for the Analysis of MicroParticles in Archaeological Samples. P. 65–94. https://doi.org/10.1007/978-3-030-42622-4_4
  86. Solomina O., Haeberli W., Kull C. et al. (2008). Historical and Holocene glacier–climate variations: General concepts and overview. Global and Planetary Change. V. 60. № 1-2. P. 1–9. http://doi.org/10.1016/j.gloplacha.2007.02.001
  87. Tarasov P.E., Guiot J., Volkova V.S. (2000). Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. of biogeography. V. 27. № 3. P. 609–620.
  88. Van Geel B. (1978). A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae cormophytes and animals. Review of Palaeobotany and Palynology. V. 25. Iss. 1. Р. 1–120. https://doi.org/10.1016/0034-6667(78)90040-4
  89. Van Geel B., Hallewas D.P., Pals J.P. (1983). A late holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, The Netherlands): Palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology. V. 38. Iss. 3-4. P. 269–335. https://doi.org/10.1016/0034-6667(83)90026-X
  90. Wanner H., Beer J., Butikofer J. et al. (2008). Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. V. 27. Iss. 19-20. P. 1791–1828. http://doi.org/10.1016/j.quascirev.2008.06.013
  91. Yamskikh G.Y., Grenaderova A.V., Borisova I.V. (2008). Rekonstruktsiya rastitel’nosti v okrestnostyakh ozera Oiskoe (po dannym sporovo-pyl’tsevogo analiza) v golotsene (territoriya Prirodnogo parka “Ergaki”) (Reconstruction of vegetation in the vicinity of Lake Oyskoe (according to spore pollen analysis) in the Holocene (territory of the Ergaki natural park)). In: “Ergaki” istoriya i budushchee: materialy kraevoi nauchno-prakticheskoi konferentsii. Krasnoyarsk: SFU. P. 26–30. (in Russ.)
  92. Yanchenko Z.A. (2009). Flora sosudistykh rastenii na severo-zapade plato Putorana (okrestnosti ozera Lama) (Flora of vascular plants in the northwest of the Putorana Plateau (visibility of Lama Lake)). Botanicheskii zhurnal. V. 94. № 7. P. 1003–1030. (in Russ.)
  93. Zakh V.A., Ryabogina N.E., Chlachula J. (2010). Climate and environmental dynamics of the mid- to late Holocene settlement in the Tobol-Ishim forest-steppe region, West Siberia. Quat. Int. V. 220. Iss. 1-2. P. 95–101. https://doi.org/10.1016/j.quaint.2009.09.010

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location of the study area. Аsterisk – sampling point of the “Bolshoye” peat column. (a) – position of the studied region, indicating the location of paleoarchives from literary sources: 1 – Pinchinskoye mire (Mikhailova et al., 2021), 2 – Bolshoe Spoloshinskoe mire (Grenaderova et al., 2021), 3 – stalagmite multiproxy record from Torgashinskaya Cave (Columbu et al, 2023), 4 – tree-ring cellulose chronologies “Mongun” (Myglan et al., 2012;), 5 – Maly Labysh mire (Blyakharchuk, Pupysheva, 2022), 6 – Malay Chile (Teletskoye Lake) (Chernykh et al., 2014), 7 – “Yarma” (Bezrukova et al., 2004), 8 – peat sequence, located in vicinity of the town of Igarka (Novenko et al., 2022); (б) – relief map of the south of the Krasnoyarsk Territory (built using the geographic information system QGIS 3.32.3-Lima); (в) – position of the study area (satellite image).

Baixar (967KB)
3. Fig. 2. Pollen diagram for the peat core Bolshoe. AP + NAP = 100%; AP – arboreal pollen; NAP – non-arboreal pollen. Exaggeration curves ×10. The plus sign denotes single pollen grains.

Baixar (476KB)
4. Fig. 3. Spores and non-pollen palynomorphs diagram for the peat core Bolshoe.

Baixar (342KB)
5. Fig. 4. Macroscopic charcoal accumulation rate in the peat core Bolshoe. 1 – contours of the interpolated charcoal influx; 2 – modeled background influx of charcoal, pcs./cm2 year; 3 – charcoal peaks (the difference between the interpolated inflow value and the background inflow value); 4 – peaks not exceeding threshold; 5 – fire episode.

Baixar (202KB)
6. Fig. 5. Age-depth model for the peat core Bolshoe calculated in the Clam package of the R program (Blaauw, 2010) using the IntCal20 calibration curve (Reimer et al., 2020).

Baixar (121KB)
7. Fig. 6. Plant macrofossil diagram, peat types, ash-content, gumification for the peat bog Bolshoe. 1 – moss tow; types of peat: 2 – moss, 3 – wood-sphagnum transitional, 4 – pine transitional, 5 – sphagnum transitional, 6 – wood-sedge transitional, 7 – hypnum transitional, 8 – sedge-hypnum eutrophical, 9 – wood eutrophical, 10 – wood transitional.

Baixar (679KB)
8. Fig. 7. Summary diagram of palaeoecological conditions indicators according to Bolshoe peat bog reconstruction. Percentage ratio of light-coniferous and dark-coniferous pollen, pollen of the main trees (AP percentage), change in the wood macroresidues amount (bark and wood), microcoal (% of NPP), macrocoal (pcs/cm³), stages of fire-fighting activities, solar insolation for 55° N. (after Berger, Loutre, 1991), intervals of increasing (dark tone) and decreasing (light tone) humidification, dynamics of dominant vegetation types (biome).

Baixar (444KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024