New data on the age and evolution of the late pleistocene cryogenesis in the southern caspian Lowland

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article presents new data on cryogenic structures of different periods found in sections in the south of the Lower Volga Region. Based on a comprehensive cryolithological analysis, cryogenic origin of these structures was confirmed. Absolute dating by the method of optically stimulated luminescence was used to determine the age of enclosing, overlying deposits and filler of the structures. Four stages of cryogenesis were established in in firth-marine deposits of the Lower Volga region: I stage ~115—105 ka (КОС-4 and КОС-3 horizons), II stage ~90—83 ka (КОС-2), III stage ~47—45 ka (CY-1), IV stage ~23—22 (КОС-1). In the south of the Caspian Lowland, with generally arid conditions existed throughout the Late Pleistocene, the humidity of sediments (determined by the geomorphological position of the sections) played a decisive role in the development of cryogenesis of cold stages. This study makes it possible to move the boundary of the maximum distribution of the Late Pleistocene permafrost area for this territory by 250 km to the south than previously assumed. The new data significantly refine our understanding of the stages and scales of the development of cryogenesis in the southeast of the East European Plain, and allow us to improve paleogeographic reconstructions for the Late Pleistocene of the Caspian Lowland.

Sobre autores

N. Taratunina

Lomonosov Moscow State University; Institute of Geography RAS

Autor responsável pela correspondência
Email: taratuninana@gmail.com

Faculty of Geography

Rússia, Moscow; Moscow

V. Rogov

Lomonosov Moscow State University; Tyumen Scientific Centre SB RAS

Email: taratuninana@gmail.com

Faculty of Geography

Rússia, Moscow; Tyumen

I. Streletskaya

Lomonosov Moscow State University

Email: taratuninana@gmail.com

Faculty of Geography

Rússia, Moscow

T. Yanina

Lomonosov Moscow State University; Institute of Geography RAS

Email: taratuninana@gmail.com

Faculty of Geography

Rússia, Moscow; Moscow

A. Kurchatova

Tyumen Scientific Centre SB RAS; Tyumen Industrial University

Email: taratuninana@gmail.com
Rússia, Tyumen; Tyumen

M. Lukyanycheva

Lomonosov Moscow State University; Institute of Geography RAS

Email: taratuninana@gmail.com

Faculty of Geography

Rússia, Moscow; Moscow

R. Kurbanov

Lomonosov Moscow State University; Institute of Geography RAS

Email: taratuninana@gmail.com

Faculty of Geography

Rússia, Moscow; Moscow

Bibliografia

  1. Badyukova E. N. (2021). Fluctuations in the level of the Caspian Sea in the Neopleistocene (was there an Atelian regression?). Oceanology. T. 61. № 2. P. 283—291. https://doi.org/10.1134/S0001437021010021
  2. Bolikhovskaya N. S., Yanina T. A., Sorokin V. M. (2017). Natural environment of the Atelian epoch (according to palynological analysis). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. № 6. P. 96—101. (in Russ.)
  3. Butuzova E. A., Kurbanov R. N., Taratunina N. A. et al. (2022). Shedding light on the timing of the largest Late Quaternary transgression of the Caspian Sea. Quat. Geochronology. V. 73. P. 101378. https://doi.org/10.1016/j.quageo.2022.101378
  4. Buylaert J. P., Ghysels G., Murray A. S. et al. (2009). Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium. Boreas. V. 38. № 1. P. 160—175.https://doi.org/10.1111/j.1502-3885.2008.00037.x
  5. Költringer C., Bradák B., Stevens T. et al. (2021). Palaeoenvironmental implications from Lower Volga loess — Joint magnetic fabric and multi-proxy analyses. Quat. Sci. Rev. V. 267. 107057. https://doi.org/10.1016/j.quascirev.2021.107057
  6. Költringer C., Stevens T., Bradák B. et al. (2020). Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quat Res. 25 p. https://doi.org/10.1017/qua.2020.73
  7. Konishchev V. N. (1981). Formirovanie sostava dispersnykh porod v kriolitosfere (Formation of the composition of dispersed rocks in the Cryolithosphere). Novosibirsk: Nauka (Publ.). 197 p. (in Russ.)
  8. Konishchev V. N., Rogov V. V. (1994). Metody kriolitologicheskikh issledovanii (Methods of cryolithological research). Moscow: MSU (Publ.). 135 p. (in Russ.)
  9. Kurbanov R., Murray A., Thompson W. et al. (2021). First reliable chronology for the early Khvalynian Caspian Sea transgression in the Lower Volga River valley. Boreas. V. 50. № 1. P. 134—146. https://doi.org/10.1111/bor.12478
  10. Kurbanov R. N., Ulyanov V. A., Anoykin A. A. et al. (2021). The first luminescence chronology of the Initial Upper Paleolithic of Eastern Kazakhstan (case study of the Ushbulak archaeological site). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. № 5. P. 131—148. (in Russ.)
  11. Kurbanov R. N., Buylaert J.-P., Stevens T. et al. (2022). A detailed luminescence chronology of the Lower Volga loess-palaeosol sequence at Leninsk. Quat. Geochronology. V. 73. P. 101376. https://doi.org/10.1016/j.quageo.2022.101376
  12. Makeev O. V. (1974). Problems of soil cryogenezis. In: Pochvennyi cryogenez. Moscow: Nauka (Publ.). P. 7—17. (in Russ.)
  13. Moskvitin A. I. (1962). Pleistotsen Nizhnego Povolzhʹya (Pleistocene of the Lower Volga region). In: Trudy GIN AN SSSR. V. 64. Moscow: AN SSSR (Publ.). 263 p. (in Russ.)
  14. Rogov V. V., Streletskaya I. D., Taratunina N. A. et al. (2020). Late Pleistocene cryogenesis in the Lower Volga River region. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2020. № 6. P. 73—85. (in Russ.)
  15. Romanovskiy N. N. (1993). Osnovy kriogeneza litosfery (Fundamentals of cryogenesis of the lithosphere). Moscow: MSU (Publ.). 336 p. (in Russ.)
  16. Shkatova V. K. (1975). Stratigrafiya pleistotsenovykh otlozhenii nizovʹyev rek Volgi i Urala i ikh korrelyatsiya (Stratigraphy of Pleistocene deposits in the lower reaches of the Volga and Ural rivers and their correlation). PhD Thesis. Leningrad: VSEGEI. 25 p. (in Russ.)
  17. Svitoch A. A. (2014). Bol’shoi Kaspii: stroenie i istoriya razvitiya (Big Caspian: structure and history of development). Moscow: MSU (Publ.). 272 p. (in Russ.)
  18. Taratunina N. A. (2022). Pozdnepleistotsenovyi kriogenez v Nizhnem Povolzh'e: usloviya i khronologiya etapov razvitiya (Late Pleistocene cryogenesis in the Lower Volga Region: chronology and paleoenvironmental context). PhD Thesis. Moscow: MSU. 28 p. (in Russ.)
  19. Taratunina N., Rogov V., Streletskaya I. et al. (2021). Late Pleistocene cryogenesis features of a loess-paleosol sequence in the Srednyaya Akhtuba reference section, Lower Volga River valley, Russia. Quat. Int. V. 590. P. 56—72. https://doi.org/10.1016/j.quaint.2020.12.015
  20. Taratunina N. A., Rogov V. V., Streletskaya I. D. et al. (2023). Chronology and conditions of the development of cryogenesis in the Caspian Lowland in the Late Pleistocene. Geomorfologiya i Paleogeografiya. V. 54. № 3. P. 49—66. (in Russ.). https://doi.org/10.31857/S2949178923030118
  21. Tudryn A., Chalié F., Lavrushin Yu.A. et al. (2013). Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River. Quat. Int. V. 292. P. 193—204. https://doi.org/10.1016/j.quaint.2012.10.032
  22. Tyutyunov I. A. (1960). Protsessy izmeneniya i preobrazovaniya pochv i gornykh porod pri otritsatel’noi temperature (kriogenez) (Processes of change and transformation of soils and rocks at negative temperatures (cryogenesis)). Moscow: AS USSR (Publ.). 133 p. (in Russ.)
  23. Vandenberghe J., French H. M., Gorbunov A. et al. (2014). The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25—17 ka BP. Boreas. V. 43. P. 652—666. https://doi.org/10.1111/bor.12070
  24. Vasil’yev Yu.M. (1961). Antropogen Yuzhnogo Zavolzhʹya (Anthropogen of the Southern Trans-Volga region). Moscow: AN SSSR (Publ.). 128 p. (in Russ.)
  25. Velichko A. A., Morozova T. D., Nechaev V. P., Porozhnyakova O. M. (1996). Paleocryogenez, pochvennyi pokrov i zemledelie (Paleocryogenezis, soil cover and agriculture). Moscow: Nauka (Publ.). 147 p. (in Russ.)
  26. Velichko A. A., Nechaev V. P., Baulin V. V. et al. (2002). Map 2. Late Valsai — Sartan ice age (20,000—18,000 BP). Permafrost. Velichko A. A. (Ed.). In: Dinamika landshaftnykh komponentov i vnutrennikh morskikh basseinov Severnoi Evrazii za poslednie 130 000 let (Dynamics of landscape components and inland marine basins of Northern Eurasia over the past 130,000 years). Мoscow: GEOS (Publ.). P. 4—5. (in Russ.)
  27. Volvakh N. E., Kurbanov R. N., Volvakh A. O. et al. (2021). The First Results of Luminescent Dating of Loess-Paleosol Series in the South of Western Siberia (Lozhok Reference Section). Izvestiya RAN. Seriya geograficheskaya. № 2. P. 284—301. (in Russ.) https://doi.org/10.31857/S2587556621020151
  28. Yanina T. A. (2012). Neopleistotsen Ponto-Kaspiya: biostratigrafiya, paleogeografiya, korrelyatsiya (Neopleistocene of the Ponto-Caspian: biostratigraphy, paleogeography, correlation). Moscow: Geograficheskii fakultet MSU (Publ.). 264 p. (in Russ.)
  29. Yershov E. D. (2002). Obshchaya geokriologiya (General geocryology). Moscow: MSU (Publ.). 682 p. (in Russ.)
  30. Zastrozhnov A., Danukalova G., Golovachev M. et al. (2020). Biostratigraphical investigations as a tool for palaeoenvironmental reconstruction of the Neopleistocene (Middle-Upper Pleistocene) at Kosika, Lower Volga, Russia. Quat. Int. V. 540. P. 38—67. https://doi.org/10.1016/j.quaint.2018.11.036

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Studied area: (а, б) — the location of the area and studied sections; (в) — general view on the relief of the southern part of the Lower Volga Region (Chernyy Yar location).

Baixar (876KB)
3. Fig. 2. Chernyy Yar section: (а) — the scheme of the — section with the coefficient of cryogenic contrast, OSL dating results, the color of the deposits reflects the natural color of the sediments; (б) — general view (white arrows show studied structures); (в) — sampled structure (numbers indicate sampling points for lithological analysis); (г) — sketch of the sampled structure with the results of OSL dating. 1 — clay; 2 — loam; 3 — sandy loam; 4 — loess; 5 — sand; 6 — redeposited sediment; 7 — paleosols; 8 — stratification; 9 — cryogenic-like structures; 10 — malacofauna; 11 — carbonates (concretions and admixtures); 12 — krotovinas; 13 — layers numbers; 14 — sampling points for lithological analyses; 15 — OSL age, ka (structures filler and overlying sediments); 16 — OSL age, ka (enclosing sediments).

Baixar (921KB)
4. Fig. 3. The Kosika section: (а) — general view; (б) — section scheme (according to Butuzova et al., with additions); (в) — fragment from fig. 3, (б); (г) — wedge-shaped structure of КОС-1 horizon; (д) — structure of horizon КОС-3 with horizontal schliers; (е) — wedge-shaped structure filled with beige sand of КОС-1 horizon (red outline), and thin, long structure filled with red sand (white outline) of КОС-4 horizon; (ж) — bag-shaped structure of КОС-2 (red outline) inflicted on the structure of КОС-3, also the results of OSL dating of the deposits of the Kosika section, the position of dates is shown by horizons conditionally; (з) — structures of КОС-3 (left) and КОС-4 (right) filled with loose sand, the tail of the left one is cemented. The color in the schemes reflects the natural color of the sediments. Symbols are in fig. 2.

Baixar (1MB)
5. Fig. 4. Morphology of quartz grains and aggregates of deposits that enclosing ice-wedge casts (layers 7—8), Chernyy Yar section: (а) — angular quartz grain with conchoidal chips; (б) — grain with chips and a fresh surface; (в) — angular grain with smoothed angles and parallel grooves (white arrows); (г) — elongated grain with smooth edges; (д) — traces of etching on the grain surface; (е) — calcite aggregate.

Baixar (690KB)
6. Fig. 5. Morphology of quartz grains of the Kosika section: (а) — angular quartz grain (layer 7); (б) — elongate, well-rounded grain (from ice-wedge cast deposits, fig. 3, (д)); (в) — quartz grain with pits (from ice-wedge cast deposits, fig. 3, (з)); (г) — quartz grain with chips (from ice-wedge cast deposits, fig. 3, (з)); (д) — aggregate with particles of different size (from ice-wedge cast deposits, fig. 3, (з)); (е) — ferruginous nodule (pseudomorphosis from fig. 3, (д)).

Baixar (948KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024