New data on the age and evolution of the late pleistocene cryogenesis in the southern caspian Lowland
- Autores: Taratunina N.A.1,2, Rogov V.V.1,3, Streletskaya I.D.1, Yanina T.A.1,2, Kurchatova A.N.3,4, Lukyanycheva M.S.1,2, Kurbanov R.N.1,2
-
Afiliações:
- Lomonosov Moscow State University
- Institute of Geography RAS
- Tyumen Scientific Centre SB RAS
- Tyumen Industrial University
- Edição: Volume 55, Nº 2 (2024)
- Páginas: 191—206
- Seção: SHORT COMMUNICATIONS
- URL: https://rjpbr.com/2949-1789/article/view/660728
- DOI: https://doi.org/10.31857/S2949178924020107
- EDN: https://elibrary.ru/PMWLRK
- ID: 660728
Citar
Resumo
The article presents new data on cryogenic structures of different periods found in sections in the south of the Lower Volga Region. Based on a comprehensive cryolithological analysis, cryogenic origin of these structures was confirmed. Absolute dating by the method of optically stimulated luminescence was used to determine the age of enclosing, overlying deposits and filler of the structures. Four stages of cryogenesis were established in in firth-marine deposits of the Lower Volga region: I stage ~115—105 ka (КОС-4 and КОС-3 horizons), II stage ~90—83 ka (КОС-2), III stage ~47—45 ka (CY-1), IV stage ~23—22 (КОС-1). In the south of the Caspian Lowland, with generally arid conditions existed throughout the Late Pleistocene, the humidity of sediments (determined by the geomorphological position of the sections) played a decisive role in the development of cryogenesis of cold stages. This study makes it possible to move the boundary of the maximum distribution of the Late Pleistocene permafrost area for this territory by 250 km to the south than previously assumed. The new data significantly refine our understanding of the stages and scales of the development of cryogenesis in the southeast of the East European Plain, and allow us to improve paleogeographic reconstructions for the Late Pleistocene of the Caspian Lowland.
Palavras-chave
Texto integral
##article.viewOnOriginalSite##Sobre autores
N. Taratunina
Lomonosov Moscow State University; Institute of Geography RAS
Autor responsável pela correspondência
Email: taratuninana@gmail.com
Faculty of Geography
Rússia, Moscow; MoscowV. Rogov
Lomonosov Moscow State University; Tyumen Scientific Centre SB RAS
Email: taratuninana@gmail.com
Faculty of Geography
Rússia, Moscow; TyumenI. Streletskaya
Lomonosov Moscow State University
Email: taratuninana@gmail.com
Faculty of Geography
Rússia, MoscowT. Yanina
Lomonosov Moscow State University; Institute of Geography RAS
Email: taratuninana@gmail.com
Faculty of Geography
Rússia, Moscow; MoscowA. Kurchatova
Tyumen Scientific Centre SB RAS; Tyumen Industrial University
Email: taratuninana@gmail.com
Rússia, Tyumen; Tyumen
M. Lukyanycheva
Lomonosov Moscow State University; Institute of Geography RAS
Email: taratuninana@gmail.com
Faculty of Geography
Rússia, Moscow; MoscowR. Kurbanov
Lomonosov Moscow State University; Institute of Geography RAS
Email: taratuninana@gmail.com
Faculty of Geography
Rússia, Moscow; MoscowBibliografia
- Badyukova E. N. (2021). Fluctuations in the level of the Caspian Sea in the Neopleistocene (was there an Atelian regression?). Oceanology. T. 61. № 2. P. 283—291. https://doi.org/10.1134/S0001437021010021
- Bolikhovskaya N. S., Yanina T. A., Sorokin V. M. (2017). Natural environment of the Atelian epoch (according to palynological analysis). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. № 6. P. 96—101. (in Russ.)
- Butuzova E. A., Kurbanov R. N., Taratunina N. A. et al. (2022). Shedding light on the timing of the largest Late Quaternary transgression of the Caspian Sea. Quat. Geochronology. V. 73. P. 101378. https://doi.org/10.1016/j.quageo.2022.101378
- Buylaert J. P., Ghysels G., Murray A. S. et al. (2009). Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium. Boreas. V. 38. № 1. P. 160—175.https://doi.org/10.1111/j.1502-3885.2008.00037.x
- Költringer C., Bradák B., Stevens T. et al. (2021). Palaeoenvironmental implications from Lower Volga loess — Joint magnetic fabric and multi-proxy analyses. Quat. Sci. Rev. V. 267. 107057. https://doi.org/10.1016/j.quascirev.2021.107057
- Költringer C., Stevens T., Bradák B. et al. (2020). Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quat Res. 25 p. https://doi.org/10.1017/qua.2020.73
- Konishchev V. N. (1981). Formirovanie sostava dispersnykh porod v kriolitosfere (Formation of the composition of dispersed rocks in the Cryolithosphere). Novosibirsk: Nauka (Publ.). 197 p. (in Russ.)
- Konishchev V. N., Rogov V. V. (1994). Metody kriolitologicheskikh issledovanii (Methods of cryolithological research). Moscow: MSU (Publ.). 135 p. (in Russ.)
- Kurbanov R., Murray A., Thompson W. et al. (2021). First reliable chronology for the early Khvalynian Caspian Sea transgression in the Lower Volga River valley. Boreas. V. 50. № 1. P. 134—146. https://doi.org/10.1111/bor.12478
- Kurbanov R. N., Ulyanov V. A., Anoykin A. A. et al. (2021). The first luminescence chronology of the Initial Upper Paleolithic of Eastern Kazakhstan (case study of the Ushbulak archaeological site). Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. № 5. P. 131—148. (in Russ.)
- Kurbanov R. N., Buylaert J.-P., Stevens T. et al. (2022). A detailed luminescence chronology of the Lower Volga loess-palaeosol sequence at Leninsk. Quat. Geochronology. V. 73. P. 101376. https://doi.org/10.1016/j.quageo.2022.101376
- Makeev O. V. (1974). Problems of soil cryogenezis. In: Pochvennyi cryogenez. Moscow: Nauka (Publ.). P. 7—17. (in Russ.)
- Moskvitin A. I. (1962). Pleistotsen Nizhnego Povolzhʹya (Pleistocene of the Lower Volga region). In: Trudy GIN AN SSSR. V. 64. Moscow: AN SSSR (Publ.). 263 p. (in Russ.)
- Rogov V. V., Streletskaya I. D., Taratunina N. A. et al. (2020). Late Pleistocene cryogenesis in the Lower Volga River region. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2020. № 6. P. 73—85. (in Russ.)
- Romanovskiy N. N. (1993). Osnovy kriogeneza litosfery (Fundamentals of cryogenesis of the lithosphere). Moscow: MSU (Publ.). 336 p. (in Russ.)
- Shkatova V. K. (1975). Stratigrafiya pleistotsenovykh otlozhenii nizovʹyev rek Volgi i Urala i ikh korrelyatsiya (Stratigraphy of Pleistocene deposits in the lower reaches of the Volga and Ural rivers and their correlation). PhD Thesis. Leningrad: VSEGEI. 25 p. (in Russ.)
- Svitoch A. A. (2014). Bol’shoi Kaspii: stroenie i istoriya razvitiya (Big Caspian: structure and history of development). Moscow: MSU (Publ.). 272 p. (in Russ.)
- Taratunina N. A. (2022). Pozdnepleistotsenovyi kriogenez v Nizhnem Povolzh'e: usloviya i khronologiya etapov razvitiya (Late Pleistocene cryogenesis in the Lower Volga Region: chronology and paleoenvironmental context). PhD Thesis. Moscow: MSU. 28 p. (in Russ.)
- Taratunina N., Rogov V., Streletskaya I. et al. (2021). Late Pleistocene cryogenesis features of a loess-paleosol sequence in the Srednyaya Akhtuba reference section, Lower Volga River valley, Russia. Quat. Int. V. 590. P. 56—72. https://doi.org/10.1016/j.quaint.2020.12.015
- Taratunina N. A., Rogov V. V., Streletskaya I. D. et al. (2023). Chronology and conditions of the development of cryogenesis in the Caspian Lowland in the Late Pleistocene. Geomorfologiya i Paleogeografiya. V. 54. № 3. P. 49—66. (in Russ.). https://doi.org/10.31857/S2949178923030118
- Tudryn A., Chalié F., Lavrushin Yu.A. et al. (2013). Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River. Quat. Int. V. 292. P. 193—204. https://doi.org/10.1016/j.quaint.2012.10.032
- Tyutyunov I. A. (1960). Protsessy izmeneniya i preobrazovaniya pochv i gornykh porod pri otritsatel’noi temperature (kriogenez) (Processes of change and transformation of soils and rocks at negative temperatures (cryogenesis)). Moscow: AS USSR (Publ.). 133 p. (in Russ.)
- Vandenberghe J., French H. M., Gorbunov A. et al. (2014). The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25—17 ka BP. Boreas. V. 43. P. 652—666. https://doi.org/10.1111/bor.12070
- Vasil’yev Yu.M. (1961). Antropogen Yuzhnogo Zavolzhʹya (Anthropogen of the Southern Trans-Volga region). Moscow: AN SSSR (Publ.). 128 p. (in Russ.)
- Velichko A. A., Morozova T. D., Nechaev V. P., Porozhnyakova O. M. (1996). Paleocryogenez, pochvennyi pokrov i zemledelie (Paleocryogenezis, soil cover and agriculture). Moscow: Nauka (Publ.). 147 p. (in Russ.)
- Velichko A. A., Nechaev V. P., Baulin V. V. et al. (2002). Map 2. Late Valsai — Sartan ice age (20,000—18,000 BP). Permafrost. Velichko A. A. (Ed.). In: Dinamika landshaftnykh komponentov i vnutrennikh morskikh basseinov Severnoi Evrazii za poslednie 130 000 let (Dynamics of landscape components and inland marine basins of Northern Eurasia over the past 130,000 years). Мoscow: GEOS (Publ.). P. 4—5. (in Russ.)
- Volvakh N. E., Kurbanov R. N., Volvakh A. O. et al. (2021). The First Results of Luminescent Dating of Loess-Paleosol Series in the South of Western Siberia (Lozhok Reference Section). Izvestiya RAN. Seriya geograficheskaya. № 2. P. 284—301. (in Russ.) https://doi.org/10.31857/S2587556621020151
- Yanina T. A. (2012). Neopleistotsen Ponto-Kaspiya: biostratigrafiya, paleogeografiya, korrelyatsiya (Neopleistocene of the Ponto-Caspian: biostratigraphy, paleogeography, correlation). Moscow: Geograficheskii fakultet MSU (Publ.). 264 p. (in Russ.)
- Yershov E. D. (2002). Obshchaya geokriologiya (General geocryology). Moscow: MSU (Publ.). 682 p. (in Russ.)
- Zastrozhnov A., Danukalova G., Golovachev M. et al. (2020). Biostratigraphical investigations as a tool for palaeoenvironmental reconstruction of the Neopleistocene (Middle-Upper Pleistocene) at Kosika, Lower Volga, Russia. Quat. Int. V. 540. P. 38—67. https://doi.org/10.1016/j.quaint.2018.11.036
Arquivos suplementares
