New data about Late Glacial diatoms in Southeastern Baltic

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The sediments of shallow basins formed along the coast of the Baltic Ice Lake about 14 500-14 000 cal BP provide a valuable data to reconstruct environmental changes in the Bølling-Allerød Interstadial. Radiocarbon dating and complex lithological and diatom analyzes were performed for the deposits of one of these paleoreservoirs exposed in the Kulikovo section (northern part of the Sambian Peninsula). As a result of studying the deposits aged 14 000 – 13 400 cal BP the total of number of 117 diatom species were identified, oligohalobic indifferent eutrophic benthic species predominated. The most typical species are Pseudostaurosira brevistriata, Staurosirella ovata, Gyrosigma attenuatum, G. acuminatum, Amphora affinis, Epithemia adnata. The obtained data on diatom communities were compared with existing ideas about the Late Glacial diatom flora for this region. This comparison made it possible not only to reconstruct the changes in the ecological conditions of the studied paleoreservoir, but also to identify general and local patterns of diatom communities formed at that time. Thus, in most paleoreservoirs pioneer cosmopolitic epiphytic diatoms of the Fragilariaceae dominate in the Allerød sediments. This indicates fairly calm hydrodynamic conditions. At the same time, in deep paleoreservoirs, despite the Allerød warming, oligotrophic planktonic species dominate in diatom communities and in some sedimentary archives, benthic diatoms capable of living in running water (Gyrosigma spp.) become significant or predominating species.

作者简介

А. Rudinskaya

Institute of Geography of the RAS

编辑信件的主要联系方式.
Email: rudinskaya94@gmail.com
俄罗斯联邦, Moscow

О. Druzhinina

Herzen State Pedagogical University of Russia; Shirshov Institute of Oceanology of the RAS

Email: rudinskaya94@gmail.com
俄罗斯联邦, Saint Petersburg; Moscow

К. Filippova

Institute of Geography of the RAS

Email: rudinskaya94@gmail.com
俄罗斯联邦, Moscow

L. Lazukova

Institute of Geography of the RAS

Email: rudinskaya94@gmail.com
俄罗斯联邦, Moscow

参考

  1. Battarbee R.W., Jones V.J., Flower R.J. (2001). Diatoms. In: Tracking Environmental Change Using Lake Sediments. Smol J.P., Birks H.J-B., Last W.M. (Eds.). Terrestrial, Algal and Siliceous Indicators. P. 155–202.
  2. Blaauw M., Christen J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. V. 6. № 3. P. 457–474. https://doi.org/10.1016/j.geomorph.2004.01.010.
  3. Bykov B.A. (1983). Ekologicheskii slovar’ (Ecological dictionary). Alma-Ata: Nauka (Publ.). 216 p. (in Russ.)
  4. Dean W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Petrol. V. 44. № 1. P. 242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
  5. Denys L. (1991). A check-list of the Diatoms in the Holocene deposits of the Western Belgian Coastal Plane with a Survey of Their Apparent Ecological Requirements. In: In: Intriduction, ecological code and complete list. Berchem: Ministere des affairs economiques, Service Geologique de Belgique. 41 p.
  6. Druzhinina, O., Kublitskiy, Y., Stančikaitė, M. et al. (2020) A new approach based on chironomid, geochemical and isotopic data from Kamyshovoe Lake. Boreas. Vol. 49. No.33. P.544–561. https://doi.org/10.1111/bor.12438
  7. Druzhinina O., Subetto D., Stančikaitė M. et al. (2015). Sediment record from the Kamyshovoe Lake: history of vegetation during late Pleistocene and early Holocene (Kaliningrad District, Russia). Baltica. V. 28. № 2. P.121–134.
  8. Gaigalas A., Vaikutienė G., Vainorius J. et al. (2008). Development of Lake Rėkyva and its environment in Late Pleistocene and Holocene. Geologija. V. 1. № 61. P. 28–36.
  9. Gałka M., Tobolski K., Bubak I. (2015). Late Glacial and Early Holocene lake level fluctuations in NE Poland tracked by macro-fossil, pollen and diatom records. Quat. Int. № 388. P. 23–38. http://dx.doi.org/10.1016/j.quaint.2014.03.009
  10. Gilyarov M.S. (Ed.). (1986). Biologicheskii entsiklopedicheskii slovar’ (Biological encyclopedic dictionary). Moscow: Sovetskaya Ensiklopediya (Publ.). 831 p. (in Russ.)
  11. Grimm E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. and Geosci. V. 13. P. 13–35.
  12. Guiry M.D., Guiry G.M. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. [Электронный ресурс]. Access way: https://www.algaebase.org/ (дата обращения 20.12.2023).
  13. Heikkilä M., Seppä H. (2010). Holocene climate dynamics in Latvia, eastern Baltic region: A pollen-based summer temperature reconstruction and regional comparison. Boreas. V. 39. № 4. P. 705–719. https://doi.org/10.1111/j.1502-3885.2010.00164.x
  14. Heiri O., Lotter A.F., Lemcke G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. of paleolimnology. V. 25. P. 101–110. https://doi.org/10.1023/A:1008119611481.
  15. Houmark-Nielsen M., Kjær K.H. (2003). Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change. J. of Quat. Sci. V. 18. № 8. P. 769–786. https://doi.org/10.1002/jqs.802
  16. Hustedt F. (1953). Die Systematik der Diatomeen in ihren Beziehungen zur Geologie und Okologie nebst einer Revision des Halobien-systems. Sv. Bot. Tidskr. V. 47. P. 509–519.
  17. Kabailiné M. (1968). Freshwater and marine diatoms in the Holocene in Lithuania. In: Iskopaemye diatomovye vodorosli SSSR. Moscow: Nauka (Publ.) P. 102–107. (in Russ.)
  18. Kabailiné M. (2002). Lakes of South-Eastern Lithuania and their environment in the Late Glacial and Holocene according to diatom and pollen analysis of sediments. Prikladnaya limnologiya. V. 3. P. 123–132. (in Russ.)
  19. Kabailiné M. (2006) Late Glacial and Holocene stratigraphy of Lithuania based on pollen and diatom data. Geologiya. V. 54. P. 42–48.
  20. Kabailiné M. (1995). The Baltic Ice Lake and Yolda Sea stages, based on data from diatom analysis in the Central, South-Eastern and Eastern Baltic. Quat. Int. V. 27. P. 69–72.
  21. Kolbe R. (1932). Grundlinien einer allgemeinen Ökologie der Diatomeen. In: Frisch K.V., R Goldschmidt R., Ruhland W., Winterstein H. (Eds.). Ergebnisse der Biologie. V. 8. P. 221–348.
  22. Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 1: Naviculaceae. Heidelberg, Berlin. 876 p.
  23. Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Heidelberg, Berlin. 596 p.
  24. Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 3: Bacillariaceae, Centrales, Fragilariaceae, Eunoticeae. Heidelberg, Berlin. 640 p.
  25. Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 4: Achnantaceae. Heidelberg, Berlin. 468 p.
  26. Kulikovskii M.S., Gluschenko A.M., Genkal S.I. et al. (2016). Opredelitel’ diatomovykh vodoroslei Rossii (Identification book for diatoms of Russia). Yaroslavl’: Filigran’ (Publ.). 804 p. (in Russ.)
  27. Lange-Bertalot H., Hoffman G., Werum M. et al. (2017). Freshwater Bentic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assesement. Koeltz Botanical Book. 908 p.
  28. Maher B.A., Thompson R. (1999). Quaternary climates, environments and magnetism. Cambridge: Cambridge University Press. 1999. 390 p.
  29. Mangerud J., Jakobsson M., Alexanderson H. et al. (2004). Ice-dammed lakes and rerouting of the drainage of Northern Eurasia during the Last Glaciation. Quat. Sci. Rev. V. 23. № 11–12. P. 1313–1332. https://doi.org/10.1016/j.quascirev.2003.12.009
  30. Miller U. (1977). Pleistocene Deposits of the Alnarp Valley, Southern Sweden. Microfossils and Their Stratigraphical Application. T. 4. Lund: University of Lund, Department of Quaternary Geology. 125 p.
  31. Özer M., Orhan M., Isik N.S. (2010). Effect of Particle Optical Properties on Size Distribution of Soils Obtained by Laser Diffraction. Environmental and Engineering Geoscience. V. 16. № 2. P. 163–173. https://doi.org/10.2113/gseegeosci.16.2.163.
  32. Proshkina-Lavrenko A.I. (1949). Physiology and ecology of diatoms. In: Diatomovyi analiz. Moscow: Gosgeolizdat (Publ.). V. 1. P. 52–79. (in Russ.)
  33. Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. V. 62. № 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
  34. Šeirienė V., Kabailienė M., Kasperovičienė J. et al. (2009). Reconstruction of postglacial palaeoenvironmental changes in eastern Lithuania: Evidence from lacustrine sediment data. Quat. Int. V. 207. P. 58–68. 10.1016/j.quaint.2008.12.005' target='_blank'>https://doi: 10.1016/j.quaint.2008.12.005
  35. Seppä H., Poska A. (2004). Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quat. Res. V. 61. № 1. P. 22–31. 10.1016/j.yqres.2003.08.00' target='_blank'>https://doi: 10.1016/j.yqres.2003.08.00
  36. Słowinski M., Zawiska I., Ott F. et al. (2017). Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quat. Sci. Rev. V. 158. P. 94–106. http://dx.doi.org/10.1016/j.quascirev.2017.01.005
  37. Stančikaitė M., Kisielienė D., Moeb D. et al. (2009). Lateglacial and early Holocene environmental changes in northeastern Lithuania. Quat. Int. V. 207. P. 80–92. http://doi.org/10.1016/j.quaint.2008.10.009
  38. Stančikaitė M., Šeirienė V., Kisielienė D. et al. (2015). Lateglacial and early Holocene environmental dynamics in northern Lithuania: A multi-proxy record from Ginkūnai Lake. Quat. Int. V. 357. P. 44–57. https://doi.org/10.1016/j.quaint.2014.08.036
  39. Stančikaitė М., Šinkūnas P., Šeirienė V. et al. (2008). Patterns and chronology of the Lateglacial environmental development at Pamerkiai and Kašučiai, Lithuania. Quat. Sci. Revs. V. 27. P. 127–147. https://doi.org/10.1016/j.quascirev.2007.01.014
  40. Subbeto D.A. (2009). Lake Sediments: Paleolimnological Reconstructions. Saint-Petersburg: Herzen University Publ. 348 p. (in Russ.)
  41. Úscinowicz S. (2011). An Outline of the History of the Baltic Sea. In: Úscinowicz S. (ed.). Geochemistry of Baltic Sea Surface Sediments. Warsaw: Polish Geological Institute-National Research Institute. P. 70–73.
  42. Veski S., Seppä, H., Stančikaitė M. et al. (2015). Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic-Belarus area. Quat. Int. V. 388. P. 4–11. https://doi.org/10.1016/j.quaint.2014.10.059
  43. Witkowski A., Cedro B., Kierzek A. et al. (2009). Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: the lower Rega River Valley sedimentary record. Hydrobiologia. V. 631. P. 155–172. https://doi.org/10.1007/s10750-009-9808-7
  44. Zaretskaya N.E., Ludikova A.V., Kuzhetsov D.D. et al. (2023). Late Glacial palaeoenvironment and development of proglacial lakes on the northern coast of the Sambian (Kaliningrad) Peninsula. Geomorfologiya i Paleogeografiya. V. 54. № 4. P. 7–25. (in Russ.). https://doi.org/10.31857/S2949178923040163

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Location of the sedimentary archives mentioned in the text with the studied diatom associations. 1 – southern border of the Scandinavian glacier around 14 500 calBP (Uscinowicz, 2011); 2 – Baltic Ice Lake about 14 500 calBP (Uscinowicz, 2011); 3 – Kulikovo section; 4 – sections and wells mentioned in the text. The numbers on the scheme indicate: 1 – Rega section in the Rega River valley (Witkowski et al., 2009), 2 – paleolake Tschekhovskoe (Słowinski et al., 2017), 3 – Aleika section (Zaretskaya et al., 2023), 4 – Lake Kamyshovoye (Druzhinina et al., 2015, 2020), 5 – swampy bridge between lakes Koyle and Perti (Gałka et al., 2015), 6 – Lake Kašučiai (Stančikaite et al., 2008), 7 – Lake Rekiva (Gaigalas et al., 2008), 8 – Lake Ginkūnai (Stančikaite et al., 2015), 9 – Lake Petrašiūnai (Stančikaite, 2009), 10 – Lake Varėnis (Šeireinė et al., 2009), 11 – Pamerkiai section (Stančikaite et al., 2008)

下载 (286KB)
3. Fig. 2. Structure, age and lithological characteristics of the Kulikovo section deposits: (a) – lithological structure and age-depth model of the deposits of the section, (б) – results of a comprehensive lithological analysis of the depth interval 192–141 cm

下载 (570KB)
4. Fig. 3. Diatom percentage diagram of selected taxa (their proportion in at least one sample is equal to or exceeds 4% of all identified valves) for the the studied interval of the Kulikovo outcrop sediment sequence. Colored stripes highlight depths with a very small number of sashs, insufficient for correct analysis

下载 (324KB)
5. Fig. 4. Distribution of ecological groups of diatoms in the studied interval of the Kulikovo outcrop sediment sequence. Colored stripes highlight depths with a very small number of sashs, insufficient for correct analysis

下载 (328KB)
6. Fig. 5. Some diatoms of the studied interval of the Kulikovo section. The numbers indicate: bentic (1 – Gyrosigma attenuatum, 2 – Navicula oblonga, 3 – Surirella librile, 4 – Pinnularia viridis, 5 – Navicula radiosa, 6 – Amphora ovalis, 7 – Amphora affinis, 8 – Aneumastus tusculus, 9 – Nitzschia semirobusta) and epiphytic diatoms (10 – Cymbopleura inaequalis, 11 – Pseudostaurosira brevistrata, 12 – Staurosirella ovata, 13 – Epithemia adnata, 14 – Cymbella lanceolata, 15 – Epithemia argus var. alpestris, 16 – Rhopalodia gibba)

下载 (956KB)

版权所有 © Russian Academy of Sciences, 2024