New data about Late Glacial diatoms in Southeastern Baltic
- 作者: Rudinskaya А.I.1, Druzhinina О.А.2,3, Filippova К.G.1, Lazukova L.I.1
-
隶属关系:
- Institute of Geography of the RAS
- Herzen State Pedagogical University of Russia
- Shirshov Institute of Oceanology of the RAS
- 期: 卷 55, 编号 3 (2024)
- 页面: 164-182
- 栏目: Late Glacial and Holocene Palaeogeography
- URL: https://rjpbr.com/2949-1789/article/view/660726
- DOI: https://doi.org/10.31857/S2949178924030093
- EDN: https://elibrary.ru/PLESSI
- ID: 660726
如何引用文章
详细
The sediments of shallow basins formed along the coast of the Baltic Ice Lake about 14 500-14 000 cal BP provide a valuable data to reconstruct environmental changes in the Bølling-Allerød Interstadial. Radiocarbon dating and complex lithological and diatom analyzes were performed for the deposits of one of these paleoreservoirs exposed in the Kulikovo section (northern part of the Sambian Peninsula). As a result of studying the deposits aged 14 000 – 13 400 cal BP the total of number of 117 diatom species were identified, oligohalobic indifferent eutrophic benthic species predominated. The most typical species are Pseudostaurosira brevistriata, Staurosirella ovata, Gyrosigma attenuatum, G. acuminatum, Amphora affinis, Epithemia adnata. The obtained data on diatom communities were compared with existing ideas about the Late Glacial diatom flora for this region. This comparison made it possible not only to reconstruct the changes in the ecological conditions of the studied paleoreservoir, but also to identify general and local patterns of diatom communities formed at that time. Thus, in most paleoreservoirs pioneer cosmopolitic epiphytic diatoms of the Fragilariaceae dominate in the Allerød sediments. This indicates fairly calm hydrodynamic conditions. At the same time, in deep paleoreservoirs, despite the Allerød warming, oligotrophic planktonic species dominate in diatom communities and in some sedimentary archives, benthic diatoms capable of living in running water (Gyrosigma spp.) become significant or predominating species.
作者简介
А. Rudinskaya
Institute of Geography of the RAS
编辑信件的主要联系方式.
Email: rudinskaya94@gmail.com
俄罗斯联邦, Moscow
О. Druzhinina
Herzen State Pedagogical University of Russia; Shirshov Institute of Oceanology of the RAS
Email: rudinskaya94@gmail.com
俄罗斯联邦, Saint Petersburg; Moscow
К. Filippova
Institute of Geography of the RAS
Email: rudinskaya94@gmail.com
俄罗斯联邦, Moscow
L. Lazukova
Institute of Geography of the RAS
Email: rudinskaya94@gmail.com
俄罗斯联邦, Moscow
参考
- Battarbee R.W., Jones V.J., Flower R.J. (2001). Diatoms. In: Tracking Environmental Change Using Lake Sediments. Smol J.P., Birks H.J-B., Last W.M. (Eds.). Terrestrial, Algal and Siliceous Indicators. P. 155–202.
- Blaauw M., Christen J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. V. 6. № 3. P. 457–474. https://doi.org/10.1016/j.geomorph.2004.01.010.
- Bykov B.A. (1983). Ekologicheskii slovar’ (Ecological dictionary). Alma-Ata: Nauka (Publ.). 216 p. (in Russ.)
- Dean W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment. Petrol. V. 44. № 1. P. 242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
- Denys L. (1991). A check-list of the Diatoms in the Holocene deposits of the Western Belgian Coastal Plane with a Survey of Their Apparent Ecological Requirements. In: In: Intriduction, ecological code and complete list. Berchem: Ministere des affairs economiques, Service Geologique de Belgique. 41 p.
- Druzhinina, O., Kublitskiy, Y., Stančikaitė, M. et al. (2020) A new approach based on chironomid, geochemical and isotopic data from Kamyshovoe Lake. Boreas. Vol. 49. No.33. P.544–561. https://doi.org/10.1111/bor.12438
- Druzhinina O., Subetto D., Stančikaitė M. et al. (2015). Sediment record from the Kamyshovoe Lake: history of vegetation during late Pleistocene and early Holocene (Kaliningrad District, Russia). Baltica. V. 28. № 2. P.121–134.
- Gaigalas A., Vaikutienė G., Vainorius J. et al. (2008). Development of Lake Rėkyva and its environment in Late Pleistocene and Holocene. Geologija. V. 1. № 61. P. 28–36.
- Gałka M., Tobolski K., Bubak I. (2015). Late Glacial and Early Holocene lake level fluctuations in NE Poland tracked by macro-fossil, pollen and diatom records. Quat. Int. № 388. P. 23–38. http://dx.doi.org/10.1016/j.quaint.2014.03.009
- Gilyarov M.S. (Ed.). (1986). Biologicheskii entsiklopedicheskii slovar’ (Biological encyclopedic dictionary). Moscow: Sovetskaya Ensiklopediya (Publ.). 831 p. (in Russ.)
- Grimm E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. and Geosci. V. 13. P. 13–35.
- Guiry M.D., Guiry G.M. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. [Электронный ресурс]. Access way: https://www.algaebase.org/ (дата обращения 20.12.2023).
- Heikkilä M., Seppä H. (2010). Holocene climate dynamics in Latvia, eastern Baltic region: A pollen-based summer temperature reconstruction and regional comparison. Boreas. V. 39. № 4. P. 705–719. https://doi.org/10.1111/j.1502-3885.2010.00164.x
- Heiri O., Lotter A.F., Lemcke G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. of paleolimnology. V. 25. P. 101–110. https://doi.org/10.1023/A:1008119611481.
- Houmark-Nielsen M., Kjær K.H. (2003). Southwest Scandinavia, 40–15 kyr BP: palaeogeography and environmental change. J. of Quat. Sci. V. 18. № 8. P. 769–786. https://doi.org/10.1002/jqs.802
- Hustedt F. (1953). Die Systematik der Diatomeen in ihren Beziehungen zur Geologie und Okologie nebst einer Revision des Halobien-systems. Sv. Bot. Tidskr. V. 47. P. 509–519.
- Kabailiné M. (1968). Freshwater and marine diatoms in the Holocene in Lithuania. In: Iskopaemye diatomovye vodorosli SSSR. Moscow: Nauka (Publ.) P. 102–107. (in Russ.)
- Kabailiné M. (2002). Lakes of South-Eastern Lithuania and their environment in the Late Glacial and Holocene according to diatom and pollen analysis of sediments. Prikladnaya limnologiya. V. 3. P. 123–132. (in Russ.)
- Kabailiné M. (2006) Late Glacial and Holocene stratigraphy of Lithuania based on pollen and diatom data. Geologiya. V. 54. P. 42–48.
- Kabailiné M. (1995). The Baltic Ice Lake and Yolda Sea stages, based on data from diatom analysis in the Central, South-Eastern and Eastern Baltic. Quat. Int. V. 27. P. 69–72.
- Kolbe R. (1932). Grundlinien einer allgemeinen Ökologie der Diatomeen. In: Frisch K.V., R Goldschmidt R., Ruhland W., Winterstein H. (Eds.). Ergebnisse der Biologie. V. 8. P. 221–348.
- Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 1: Naviculaceae. Heidelberg, Berlin. 876 p.
- Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Heidelberg, Berlin. 596 p.
- Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 3: Bacillariaceae, Centrales, Fragilariaceae, Eunoticeae. Heidelberg, Berlin. 640 p.
- Kramer K., Lange-Bertalot H. (2001). Süßwasserflora von Mitteleuropa. Teil 4: Achnantaceae. Heidelberg, Berlin. 468 p.
- Kulikovskii M.S., Gluschenko A.M., Genkal S.I. et al. (2016). Opredelitel’ diatomovykh vodoroslei Rossii (Identification book for diatoms of Russia). Yaroslavl’: Filigran’ (Publ.). 804 p. (in Russ.)
- Lange-Bertalot H., Hoffman G., Werum M. et al. (2017). Freshwater Bentic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assesement. Koeltz Botanical Book. 908 p.
- Maher B.A., Thompson R. (1999). Quaternary climates, environments and magnetism. Cambridge: Cambridge University Press. 1999. 390 p.
- Mangerud J., Jakobsson M., Alexanderson H. et al. (2004). Ice-dammed lakes and rerouting of the drainage of Northern Eurasia during the Last Glaciation. Quat. Sci. Rev. V. 23. № 11–12. P. 1313–1332. https://doi.org/10.1016/j.quascirev.2003.12.009
- Miller U. (1977). Pleistocene Deposits of the Alnarp Valley, Southern Sweden. Microfossils and Their Stratigraphical Application. T. 4. Lund: University of Lund, Department of Quaternary Geology. 125 p.
- Özer M., Orhan M., Isik N.S. (2010). Effect of Particle Optical Properties on Size Distribution of Soils Obtained by Laser Diffraction. Environmental and Engineering Geoscience. V. 16. № 2. P. 163–173. https://doi.org/10.2113/gseegeosci.16.2.163.
- Proshkina-Lavrenko A.I. (1949). Physiology and ecology of diatoms. In: Diatomovyi analiz. Moscow: Gosgeolizdat (Publ.). V. 1. P. 52–79. (in Russ.)
- Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon. V. 62. № 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
- Šeirienė V., Kabailienė M., Kasperovičienė J. et al. (2009). Reconstruction of postglacial palaeoenvironmental changes in eastern Lithuania: Evidence from lacustrine sediment data. Quat. Int. V. 207. P. 58–68. 10.1016/j.quaint.2008.12.005' target='_blank'>https://doi: 10.1016/j.quaint.2008.12.005
- Seppä H., Poska A. (2004). Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quat. Res. V. 61. № 1. P. 22–31. 10.1016/j.yqres.2003.08.00' target='_blank'>https://doi: 10.1016/j.yqres.2003.08.00
- Słowinski M., Zawiska I., Ott F. et al. (2017). Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quat. Sci. Rev. V. 158. P. 94–106. http://dx.doi.org/10.1016/j.quascirev.2017.01.005
- Stančikaitė M., Kisielienė D., Moeb D. et al. (2009). Lateglacial and early Holocene environmental changes in northeastern Lithuania. Quat. Int. V. 207. P. 80–92. http://doi.org/10.1016/j.quaint.2008.10.009
- Stančikaitė M., Šeirienė V., Kisielienė D. et al. (2015). Lateglacial and early Holocene environmental dynamics in northern Lithuania: A multi-proxy record from Ginkūnai Lake. Quat. Int. V. 357. P. 44–57. https://doi.org/10.1016/j.quaint.2014.08.036
- Stančikaitė М., Šinkūnas P., Šeirienė V. et al. (2008). Patterns and chronology of the Lateglacial environmental development at Pamerkiai and Kašučiai, Lithuania. Quat. Sci. Revs. V. 27. P. 127–147. https://doi.org/10.1016/j.quascirev.2007.01.014
- Subbeto D.A. (2009). Lake Sediments: Paleolimnological Reconstructions. Saint-Petersburg: Herzen University Publ. 348 p. (in Russ.)
- Úscinowicz S. (2011). An Outline of the History of the Baltic Sea. In: Úscinowicz S. (ed.). Geochemistry of Baltic Sea Surface Sediments. Warsaw: Polish Geological Institute-National Research Institute. P. 70–73.
- Veski S., Seppä, H., Stančikaitė M. et al. (2015). Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic-Belarus area. Quat. Int. V. 388. P. 4–11. https://doi.org/10.1016/j.quaint.2014.10.059
- Witkowski A., Cedro B., Kierzek A. et al. (2009). Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: the lower Rega River Valley sedimentary record. Hydrobiologia. V. 631. P. 155–172. https://doi.org/10.1007/s10750-009-9808-7
- Zaretskaya N.E., Ludikova A.V., Kuzhetsov D.D. et al. (2023). Late Glacial palaeoenvironment and development of proglacial lakes on the northern coast of the Sambian (Kaliningrad) Peninsula. Geomorfologiya i Paleogeografiya. V. 54. № 4. P. 7–25. (in Russ.). https://doi.org/10.31857/S2949178923040163
补充文件
