Reccurence of strong floods on western sakhalin and intensity of cyclogenesis in middle-late holocene
- Autores: Razjigaeva N.G.1, Ganzey L.A.1, Grebennikova T.A.1, Ponomarev V.I.2, Afanasiev V.V.2, Gorbunov A.O.2, Kliminc M.A.3
-
Afiliações:
- Pacific Geographical Institute FEB RAS
- Institute of Marine Geology and Geophysics FEB RAS
- Institute of Water and Ecological Problems FEB RAS
- Edição: Volume 55, Nº 2 (2024)
- Páginas: 173—190
- Seção: SHORT COMMUNICATIONS
- URL: https://rjpbr.com/2949-1789/article/view/660725
- DOI: https://doi.org/10.31857/S2949178924020091
- EDN: https://elibrary.ru/PNBIGI
- ID: 660725
Citar
Resumo
The geological record of extreme floods associated with the passage of strongest typhoons and deep extratropical cyclones over the past 6370 years has been restored in Western Sakhalin (the Yablochnaya River basin). A section of peat bog with numerous layers of loam formed during extreme floods was used for the reconstructions. A recent analogue of such events is Typhoon Phyllis (1981), total rainfall reached 300 mm. Ash content was tested for identification of mineral component that was input to the peat during floods. According to the “age-depth” model, we has determined the ages of 38 extreme floods and periods of weaker floods when organomineral sediments accumulated. During periods of active cyclogenesis, the frequency of extreme floods was once every 10—30 years. The paleoclimatic background of events has been analyzed. Long periods with extreme floods were identified 6470—5490, 4300—3670 years ago, and the last 3110 years ago severe floods were rare events. We compare the records of strong floods that occurred on the western and eastern coast of South Sakhalin and in other regions of East Asia. It has been established that periods with frequent strong paleotyphoons and deep extratropical cyclones do not always coincide in time, which could be due to different trajectories of cyclones under different climatic situations. As in the modern period, the increase in the intensity of cyclogenesis and the frequency of typhoons in the Middle-Late Holocene was closely related to warm pool in the western tropical zone of the Pacific Ocean, anomalies of El Niño and atmospheric centers of action.
Palavras-chave
Texto integral
##article.viewOnOriginalSite##Sobre autores
N. Razjigaeva
Pacific Geographical Institute FEB RAS
Autor responsável pela correspondência
Email: nadyar@tigdvo.ru
Rússia, Vladivostok
L. Ganzey
Pacific Geographical Institute FEB RAS
Email: nadyar@tigdvo.ru
Rússia, Vladivostok
T. Grebennikova
Pacific Geographical Institute FEB RAS
Email: nadyar@tigdvo.ru
Rússia, Vladivostok
V. Ponomarev
Institute of Marine Geology and Geophysics FEB RAS
Email: nadyar@tigdvo.ru
Rússia, Yuzhno-Sakhalinsk
V. Afanasiev
Institute of Marine Geology and Geophysics FEB RAS
Email: nadyar@tigdvo.ru
Rússia, Yuzhno-Sakhalinsk
A. Gorbunov
Institute of Marine Geology and Geophysics FEB RAS
Email: nadyar@tigdvo.ru
Rússia, Yuzhno-Sakhalinsk
M. Kliminc
Institute of Water and Ecological Problems FEB RAS
Email: nadyar@tigdvo.ru
Rússia, Khabarovsk
Bibliografia
- Aizen E. M., Aizen V. B., Melack J. M. et al. (2001). Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. of Climatology. V. 21. Iss. 5. P. 535—556. https://doi.org/10.1002/joc.626
- Astakhov A. S., Aksentov K. I., Dar’in A.V. et al. (2019). Rconstructing the frequency of catastrophic floods on the western coast of the Sea of Japan based on sedimentary proxy. Meteorol. Gidrol. № 1. P. 62—70. https://doi.org/10.3103/S1068373919010072
- Barron J. A., Anderson L. (2011). Enhanced Late Holocene ENSO/ PDO expression along the margins of the eastern North Pacific. Quat. Int. V. 235. Iss. 1—2. P. 3—12. https://doi.org/10.1016/j.quaint.2010.02.026
- Bazarova V. B., Klimin M. А., Kopoteva T. A. (2018). Holocene dynamic of Eastern-Asia Monsoon in Lower Amur Area. Geography and Natural Resources. V. 39. № 3. P. 239—247. https://doi.org/10.1134/S1875372818030071
- Blaauw M., Christen J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. V. 6. № 3. P. 457—474. https://doi.org/10.1214/ba/1339616472
- Borisova O. K. (2014). Landscape-climatic changes at Holocene. Izvestiya RAN. Seriya geograficheskaya. № 2. P. 5—20. (in Russ.). https://doi.org/10.15356/0373-2444-2014-2-5-20
- Byshev V. I., Neiman V. G., Ponomarev V. I. et al. (2014). The influence of global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Dokl. Earth Sci. V. 458. № 1. P. 1116—1120. https://doi.org/
- Chen F., Xu Q., Chen J. et al. (2015). East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Repоrt. V. 5. P. 11186. https://doi.org/10.1038/srep11186
- Chen H.-F., Wen S.-Y., Song S.-R. et al. (2012). Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene. J. of Quat. Sci. V. 27. Iss. 9. P. 964—972. https://doi.org/10.1002/jqs.2590
- Gensiorovsky Yu.V., Kazakov N. A. (2015). Conditions for the formation of extreme floods in low-mountain river basins (on the example of Sakhalin Island). In: Geodinamicheskie protsessy i prirodnye katastrofy. Opyt Neftegorska: Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiyem, Yuzhno-Sakhalinsk, 26—30 maya 2015 g.: sbornik materialov. Iss. 2. Vladivostok: Dal’nauka (Publ.). P. 302—305. (in Russ.)
- Glebova S. Yu. (2018). Cyclones over the Pacific Ocean and Far-Eastern Seas in cold and warm seasons and their influence on wind and thermal regime in the last two decade period. Izvestiya TINRO. Iss. 193. P. 153—166. (in Russ.). https://doi.org/10.26428/1606-9919-2018-193-153-166
- Glebova S. Yu. (2021). Siberian High as an important factor for development of cyclonic activity in the Far Eastern region in winter, spring and summer seasons. Izvestiya TINRO. Iss. 201. V. 4. P. 879—894. (in Russ.). https://doi.org/10.26428/1606-9919-2021-201-879-894
- Ho C. H., Baik J. J., Kim J. H. et al. (2004). Interdecadal changes in summer-time typhoon tracks. J. Clim. V. 17. Iss. 9. P. 1767—1776. https://doi.org/
- Ishii Y., Hori K., Momohara A. (2017). Middle to late-Holocene flood activity estimated from loss on ignition of peat in the Ishikari lowland, northern Japan. Global and Planetary Change. V. 153. P. 1—15. https://doi.org/10.1016/j.gloplacha.2017.04.004
- Katsuki K., Yang D. Y., Seto K. et al. (2016). Factors controlling typhoons and storm rain on the Korean Peninsula during the Little Ice Age. J. Paleolimnol. V. 55. P. 35—48. https://doi.org/10.1007/s10933-015-9861-3
- Kawahata H., Ohshima H., Shimada C. et al. (2003). Terrestrial-oceanic environmental change in the southern Okhotsk Sea during the Holocene. Quat. Int. V. 108. Iss. 1. P. 67—76.
- Kazakov N. A., Gensiorovsky Yu.V. (2007). The influence of the vertical gradient of precipitation on the characteristics of hydrological, avalanche and mudflow processes in the low mountains. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. № 4. P. 342—347. (in Russ.)
- Korotky A. M., Grebennikova T. A., Pushkar V. S. et al. (1997b). Climatic changes of the territory of South Far East at Late Pleistocene-Holocene. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk. № 3. P. 121—143. (in Russ.).
- Korotky A. M., Pushkar V. S., Grebennikova T. A. et al. (1997a). Morskie terrasy i chetvertichnaya istoriya shel’fa Sakhalina (Marine terraces and Quaternary history of Sakhalin shelf). Vladivostok: Dal’nauka (Publ.). 194 p. (in Russ.).
- Leipe C., Müller S., Hille K. et al. (2018). Vegetation change and human impacts on Rebun Island (Northwest Pacific) over the last 6000 years. Quat. Sci. Rev. V. 193. P. 129—144. https://doi.org/10.1016/j.quascirev.2018.06.011
- Leipe C., Nakagawa T., Gotanda K. et al. (2015). Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls. Quat. Sci. Rev. V. 116. P. 57—17 https://doi.org/10.1016/J.QUASCIREV.2015.03.012
- Lim J., Lee J.-Y., Hong S. S. et al. (2017). Holocene change in flooding frequency in South Korea and their linkage to centennial-to-millennial-scale El Nino-Southern Oscillation activity. Quat. Res. V. 87. P. 37—48. https://doi.org/10.1017/qua.2016.8.
- Lim J., Um I-K., Yi S., et al. (2022). Hydroclimate change and its controlling factors during the middle to late Holocene and possible 3.7-ka climatic shift over East Asia. Quat. Res. V. 109. P. 53—64. https://doi.org/10.1017/qua.2022.13
- Makarova T. A., Grebennikova T. A. (2015). Reconstructing the natural conditions of the islands of the Lesser Kuril Ridge from the composition of diatom flora of the Late Pleistocene‒Holocene peat deposits. Geogr. Nat. Resour. Iss. 36. № 2. P. 169—178. https://doi.org/10.1134/S1875372815020092
- Mayewski P. A., Rohling E. E., Stager J. C. et al. (2004). Holocene climate variability. Quat. Res. V. 62. P. 243—255. https://doi.org/10.1016/j.yqres.2004.07.001
- Mezentseva M. I., Grishina M. A., Kondrat’ev I.I. (2019). Trajectories and depth of cyclones entering the territory of Primorsky Krai. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk. № 4. P. 29—38. (in Russ.). http://dx.doi.org/10.25808/08697698.2019.206.4.003
- Mikishin Yu.A., Gvozdeva I. G. (2017). Early Subboreal of Sakhalin. Vestnik Severo-Vostochnogo nauchnogo tsentra DVO RAN. № 4. P. 25—38. (in Russ.).
- Mikishin Yu.A., Gvozdeva I. G. (2018). Traces of cooling in the Southern Sakhalin in the late-Glacial and Atlantic Period of Holocene. Uspekhi sovremennogo estestvoznaniya. № 3. P. 107—116. (in Russ.)
- Mikishin Yu.A., Pushkar V. S., Gvozdeva I. G. (2020). Paleogeography of Southern Sakhalin coast in Subboreal Period of the Holocene. Uspekhi sovremennogo estestvoznaniya. № 10. P. 97—107. (in Russ.).
- Moy C. M., Seltzer G. O., Rodbell D. T. et al. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature. V. 420 (6912). P. 162—165. https://doi.org/10.1038/nature01194
- Nauchno-prikladnoi spravochnik po klimatu. Vyp. 34 (Scientific and applied climate reference book. Iss. 34.). (1990). Leningrad: Gidrometeoizdat (Publ.). 351 p. (in Russ.)
- Park J., Park J., Yi S. et al. (2019). Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean Peninsula. Sci. Rep. V. 9. P. 10806. https://doi.org/10.1038/s41598-019-47264-8
- Park J., Park J., Yi S. et al. (2021). Holocene hydroclimate reconstruction based on pollen, XRF, and grain-size analysis and its implications for past societies of the Korean Peninsula. The Holocene. V. 31. № 9. P. 1489—1500. https://doi.org/10.1177/09596836211019115
- Ponomarev V. I., Dmitrieva E. V., Shkorba S. P. (2015). Features of climatic regimes in the northern part of the Asia-Pacific region. Sistemy kontrolya okruzhayushchei sredy. № 1(21). P. 67—72. (in Russ.)
- Ponomarev V. I., Dmitrieva E. V., Shkorba S. P. et al. (2018). Change of the global climate regime at the turn of the XX—XXI centuries. Vestnik moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Iss. 21. № 1. P. 160—167. (in Russ.).
- Prushkovskaya I. A. (2019). The impact of typhoons on the content of diatoms in sediments from Amur Bay (Sea of Japan) over the last 150 years. Vestnik Kamchatskoi regional’noi assotsiatsii “Uchebno-nauchnyy tsentr”. Seriya: Nauki o Zemle. V. 42. № 2. P. 111—119. (in Russ.). http://doi.org/10.31431/1816-5524-2019-2-42-111-119
- Razjigaeva N., Ganzey L., Grebennikova T. et al. (2023). “Cold-Dry” and “Cold-Wet” Events in the Late Holocene, Southern Russian Far East. Climate. V. 11. P. 91. https://doi.org/10.3390/cli11040091
- Razjigaeva N. G., Grebennikova T. A., Ganzey L. A. et al. (2020). Recurrence of extreme floods in south Sakhalin Island as evidence of paleo-typhoon variability in North-Western Pacific since 6.6 ka BP. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 556. № 3. P. 109901. https://doi.org/10.1016/j.palaeo.2020.109901
- Razzhigaeva N. G., Ganzey L. A., Grebennikova T. A. et al. (2019). Paleoflood records within Sikhote-Alin foothills during last 2.2 ka. Izvestiya RAN. Seriya geograficheskaya. № 2. P. 85—99. (in Russ.). http://doi.org/10.31857/S2587-55662019285-99.
- Razzhigaeva N. G., Grebennikova T. A., Ganzey L. A. et al. (2022). Response of the Lake Ecosystem of the Lesser Kuril Ridge to Paleoclimatic and Seismic Events. Izv. Atmos. Oceanic Phys. V. 58. № 11. P. 1377—1397. http://doi.org/10.1134/S0001433822110068
- Reimer P., Austin W. E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0—55 kcal BP). Radiocarbon. V. 62. Iss. 4: IntCal20: Calibration Iss. P. 725—757. https://doi.org/10.1017/RDC.2020.41
- Rein B., Sirocko F., Lückge A. et al. (2005). El Niňo variability off Peru during the last 20,000 years. Paleoceanography and Paleoclimatology. V. 20. Iss. 4. P. 78—185. http://doi.org/10.1029/2004PA001099
- Sakaguchi Y. (1983). Warm and cold stages in the past 7600 years in Japan and their global correlation. Bulletin of the Department of geography, University of Tokyo. V. 15. P. 1—31.
- Stebich M., Rehfeld K., Schlütz F. et al. (2015). Holocene vegetation and climate dynamic of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. V. 124. P. 275—289. http://doi.org/10.1016/J.QUASCIREV.2015.07.021
- Stott L., Cannariato K., Thunell R. et al. (2004). Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature. V. 431(7004). P. 56—59. http://doi.org/10.1038/nature02903
- Sun Y., Oppo D. W., Xiang R. et al. (2005). Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography and Paleoclimatology. V. 20. № 4. P. PA4005. http://doi.org/10.1029/2004PA001061
- Suzuki Y., Tada R., Nagashima K. et al. (2021). Extreme flood events and their frequency variations during the middle to late-Holocene recorded in the sediment of Lake Suigetsu, central Japan. The Holocene. V. 31(78). P. 121—133. http://doi.org/10.1177/0959683620961497
- Tunegolovets V. P. (2010). A comprehensive method for predicting the movement and intensity of typhoons. Trudy DVNIGMI. № 1. P. 189—202. (in Russ.).
- Walker M., Head M. J., Lowe J. et al. (2019). Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. of Quat. Sci. V. 34. Iss. 3. P. 173—186. https://doi.org/10.1002/jqs.3097
- Wanner H., Solomina O., Grosjean M. et al. (2011). Structure and origin of Holocene cold events. Quat. Sci. Rev. V. 30. Iss. 21. P. 3109—3123. https://doi.org https://doi.org/10.1016/J.QUASCIREV.2011.07.010
- Woodruff J. D., Donnelly J. P., Okusu A. (2009). Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quat. Sci. Rev. V. 28. Iss. 17. P. 1774—1785. https://doi.org/10.1016/j.quascirev.2009.02.005
- Yamamoto M., Wang F., Irino T. et al. (2021). A lacustrine biomarker record from Rebun Island reveals a warm summer climate in northern Japan during the early middle Holocene due to a stronger North Pacific High. Front. Earth Sci. V. 9. P. 704332. https://doi.org/10.3389/feart.2021.704332
- Zhang Z., Leduc G., Sachs J. P. (2014). El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands. Earth Planet. Sci. Lett. V. 404. P. 420—434. https://doi.org/10.1016/j. epsl.2014.07.013
- Zhou X., Liu Z., Yan Q. et al. (2019). Enhanced tropical cyclones intensity in the Western North Pacific during warm period over the last two Millennia. Geophys. Res. Lett. V. 46. P. 11959—11966. https://doi.org/10.1029/2019GL083504
- Zuenko Yu.I. (2007). Promyslovaya okeanologiya Yaponskogo morya (Fisheries Oceanography of the Japan Sea). Vladivostok: TINRO-centre (Publ.). 227 p. (in Russ.)
Arquivos suplementares
