Reccurence of strong floods on western sakhalin and intensity of cyclogenesis in middle-late holocene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The geological record of extreme floods associated with the passage of strongest typhoons and deep extratropical cyclones over the past 6370 years has been restored in Western Sakhalin (the Yablochnaya River basin). A section of peat bog with numerous layers of loam formed during extreme floods was used for the reconstructions. A recent analogue of such events is Typhoon Phyllis (1981), total rainfall reached 300 mm. Ash content was tested for identification of mineral component that was input to the peat during floods. According to the “age-depth” model, we has determined the ages of 38 extreme floods and periods of weaker floods when organomineral sediments accumulated. During periods of active cyclogenesis, the frequency of extreme floods was once every 10—30 years. The paleoclimatic background of events has been analyzed. Long periods with extreme floods were identified 6470—5490, 4300—3670 years ago, and the last 3110 years ago severe floods were rare events. We compare the records of strong floods that occurred on the western and eastern coast of South Sakhalin and in other regions of East Asia. It has been established that periods with frequent strong paleotyphoons and deep extratropical cyclones do not always coincide in time, which could be due to different trajectories of cyclones under different climatic situations. As in the modern period, the increase in the intensity of cyclogenesis and the frequency of typhoons in the Middle-Late Holocene was closely related to warm pool in the western tropical zone of the Pacific Ocean, anomalies of El Niño and atmospheric centers of action.

Sobre autores

N. Razjigaeva

Pacific Geographical Institute FEB RAS

Autor responsável pela correspondência
Email: nadyar@tigdvo.ru
Rússia, Vladivostok

L. Ganzey

Pacific Geographical Institute FEB RAS

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

T. Grebennikova

Pacific Geographical Institute FEB RAS

Email: nadyar@tigdvo.ru
Rússia, Vladivostok

V. Ponomarev

Institute of Marine Geology and Geophysics FEB RAS

Email: nadyar@tigdvo.ru
Rússia, Yuzhno-Sakhalinsk

V. Afanasiev

Institute of Marine Geology and Geophysics FEB RAS

Email: nadyar@tigdvo.ru
Rússia, Yuzhno-Sakhalinsk

A. Gorbunov

Institute of Marine Geology and Geophysics FEB RAS

Email: nadyar@tigdvo.ru
Rússia, Yuzhno-Sakhalinsk

M. Kliminc

Institute of Water and Ecological Problems FEB RAS

Email: nadyar@tigdvo.ru
Rússia, Khabarovsk

Bibliografia

  1. Aizen E. M., Aizen V. B., Melack J. M. et al. (2001). Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. of Climatology. V. 21. Iss. 5. P. 535—556. https://doi.org/10.1002/joc.626
  2. Astakhov A. S., Aksentov K. I., Dar’in A.V. et al. (2019). Rconstructing the frequency of catastrophic floods on the western coast of the Sea of Japan based on sedimentary proxy. Meteorol. Gidrol. № 1. P. 62—70. https://doi.org/10.3103/S1068373919010072
  3. Barron J. A., Anderson L. (2011). Enhanced Late Holocene ENSO/ PDO expression along the margins of the eastern North Pacific. Quat. Int. V. 235. Iss. 1—2. P. 3—12. https://doi.org/10.1016/j.quaint.2010.02.026
  4. Bazarova V. B., Klimin M. А., Kopoteva T. A. (2018). Holocene dynamic of Eastern-Asia Monsoon in Lower Amur Area. Geography and Natural Resources. V. 39. № 3. P. 239—247. https://doi.org/10.1134/S1875372818030071
  5. Blaauw M., Christen J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. V. 6. № 3. P. 457—474. https://doi.org/10.1214/ba/1339616472
  6. Borisova O. K. (2014). Landscape-climatic changes at Holocene. Izvestiya RAN. Seriya geograficheskaya. № 2. P. 5—20. (in Russ.). https://doi.org/10.15356/0373-2444-2014-2-5-20
  7. Byshev V. I., Neiman V. G., Ponomarev V. I. et al. (2014). The influence of global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Dokl. Earth Sci. V. 458. № 1. P. 1116—1120. https://doi.org/
  8. Chen F., Xu Q., Chen J. et al. (2015). East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Repоrt. V. 5. P. 11186. https://doi.org/10.1038/srep11186
  9. Chen H.-F., Wen S.-Y., Song S.-R. et al. (2012). Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene. J. of Quat. Sci. V. 27. Iss. 9. P. 964—972. https://doi.org/10.1002/jqs.2590
  10. Gensiorovsky Yu.V., Kazakov N. A. (2015). Conditions for the formation of extreme floods in low-mountain river basins (on the example of Sakhalin Island). In: Geodinamicheskie protsessy i prirodnye katastrofy. Opyt Neftegorska: Vserossiiskaya nauchnaya konferentsiya s mezhdunarodnym uchastiyem, Yuzhno-Sakhalinsk, 26—30 maya 2015 g.: sbornik materialov. Iss. 2. Vladivostok: Dal’nauka (Publ.). P. 302—305. (in Russ.)
  11. Glebova S. Yu. (2018). Cyclones over the Pacific Ocean and Far-Eastern Seas in cold and warm seasons and their influence on wind and thermal regime in the last two decade period. Izvestiya TINRO. Iss. 193. P. 153—166. (in Russ.). https://doi.org/10.26428/1606-9919-2018-193-153-166
  12. Glebova S. Yu. (2021). Siberian High as an important factor for development of cyclonic activity in the Far Eastern region in winter, spring and summer seasons. Izvestiya TINRO. Iss. 201. V. 4. P. 879—894. (in Russ.). https://doi.org/10.26428/1606-9919-2021-201-879-894
  13. Ho C. H., Baik J. J., Kim J. H. et al. (2004). Interdecadal changes in summer-time typhoon tracks. J. Clim. V. 17. Iss. 9. P. 1767—1776. https://doi.org/
  14. Ishii Y., Hori K., Momohara A. (2017). Middle to late-Holocene flood activity estimated from loss on ignition of peat in the Ishikari lowland, northern Japan. Global and Planetary Change. V. 153. P. 1—15. https://doi.org/10.1016/j.gloplacha.2017.04.004
  15. Katsuki K., Yang D. Y., Seto K. et al. (2016). Factors controlling typhoons and storm rain on the Korean Peninsula during the Little Ice Age. J. Paleolimnol. V. 55. P. 35—48. https://doi.org/10.1007/s10933-015-9861-3
  16. Kawahata H., Ohshima H., Shimada C. et al. (2003). Terrestrial-oceanic environmental change in the southern Okhotsk Sea during the Holocene. Quat. Int. V. 108. Iss. 1. P. 67—76.
  17. Kazakov N. A., Gensiorovsky Yu.V. (2007). The influence of the vertical gradient of precipitation on the characteristics of hydrological, avalanche and mudflow processes in the low mountains. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. № 4. P. 342—347. (in Russ.)
  18. Korotky A. M., Grebennikova T. A., Pushkar V. S. et al. (1997b). Climatic changes of the territory of South Far East at Late Pleistocene-Holocene. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk. № 3. P. 121—143. (in Russ.).
  19. Korotky A. M., Pushkar V. S., Grebennikova T. A. et al. (1997a). Morskie terrasy i chetvertichnaya istoriya shel’fa Sakhalina (Marine terraces and Quaternary history of Sakhalin shelf). Vladivostok: Dal’nauka (Publ.). 194 p. (in Russ.).
  20. Leipe C., Müller S., Hille K. et al. (2018). Vegetation change and human impacts on Rebun Island (Northwest Pacific) over the last 6000 years. Quat. Sci. Rev. V. 193. P. 129—144. https://doi.org/10.1016/j.quascirev.2018.06.011
  21. Leipe C., Nakagawa T., Gotanda K. et al. (2015). Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls. Quat. Sci. Rev. V. 116. P. 57—17 https://doi.org/10.1016/J.QUASCIREV.2015.03.012
  22. Lim J., Lee J.-Y., Hong S. S. et al. (2017). Holocene change in flooding frequency in South Korea and their linkage to centennial-to-millennial-scale El Nino-Southern Oscillation activity. Quat. Res. V. 87. P. 37—48. https://doi.org/10.1017/qua.2016.8.
  23. Lim J., Um I-K., Yi S., et al. (2022). Hydroclimate change and its controlling factors during the middle to late Holocene and possible 3.7-ka climatic shift over East Asia. Quat. Res. V. 109. P. 53—64. https://doi.org/10.1017/qua.2022.13
  24. Makarova T. A., Grebennikova T. A. (2015). Reconstructing the natural conditions of the islands of the Lesser Kuril Ridge from the composition of diatom flora of the Late Pleistocene‒Holocene peat deposits. Geogr. Nat. Resour. Iss. 36. № 2. P. 169—178. https://doi.org/10.1134/S1875372815020092
  25. Mayewski P. A., Rohling E. E., Stager J. C. et al. (2004). Holocene climate variability. Quat. Res. V. 62. P. 243—255. https://doi.org/10.1016/j.yqres.2004.07.001
  26. Mezentseva M. I., Grishina M. A., Kondrat’ev I.I. (2019). Trajectories and depth of cyclones entering the territory of Primorsky Krai. Vestnik Dal’nevostochnogo otdeleniya Rossiiskoi akademii nauk. № 4. P. 29—38. (in Russ.). http://dx.doi.org/10.25808/08697698.2019.206.4.003
  27. Mikishin Yu.A., Gvozdeva I. G. (2017). Early Subboreal of Sakhalin. Vestnik Severo-Vostochnogo nauchnogo tsentra DVO RAN. № 4. P. 25—38. (in Russ.).
  28. Mikishin Yu.A., Gvozdeva I. G. (2018). Traces of cooling in the Southern Sakhalin in the late-Glacial and Atlantic Period of Holocene. Uspekhi sovremennogo estestvoznaniya. № 3. P. 107—116. (in Russ.)
  29. Mikishin Yu.A., Pushkar V. S., Gvozdeva I. G. (2020). Paleogeography of Southern Sakhalin coast in Subboreal Period of the Holocene. Uspekhi sovremennogo estestvoznaniya. № 10. P. 97—107. (in Russ.).
  30. Moy C. M., Seltzer G. O., Rodbell D. T. et al. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature. V. 420 (6912). P. 162—165. https://doi.org/10.1038/nature01194
  31. Nauchno-prikladnoi spravochnik po klimatu. Vyp. 34 (Scientific and applied climate reference book. Iss. 34.). (1990). Leningrad: Gidrometeoizdat (Publ.). 351 p. (in Russ.)
  32. Park J., Park J., Yi S. et al. (2019). Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean Peninsula. Sci. Rep. V. 9. P. 10806. https://doi.org/10.1038/s41598-019-47264-8
  33. Park J., Park J., Yi S. et al. (2021). Holocene hydroclimate reconstruction based on pollen, XRF, and grain-size analysis and its implications for past societies of the Korean Peninsula. The Holocene. V. 31. № 9. P. 1489—1500. https://doi.org/10.1177/09596836211019115
  34. Ponomarev V. I., Dmitrieva E. V., Shkorba S. P. (2015). Features of climatic regimes in the northern part of the Asia-Pacific region. Sistemy kontrolya okruzhayushchei sredy. № 1(21). P. 67—72. (in Russ.)
  35. Ponomarev V. I., Dmitrieva E. V., Shkorba S. P. et al. (2018). Change of the global climate regime at the turn of the XX—XXI centuries. Vestnik moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Iss. 21. № 1. P. 160—167. (in Russ.).
  36. Prushkovskaya I. A. (2019). The impact of typhoons on the content of diatoms in sediments from Amur Bay (Sea of Japan) over the last 150 years. Vestnik Kamchatskoi regional’noi assotsiatsii “Uchebno-nauchnyy tsentr”. Seriya: Nauki o Zemle. V. 42. № 2. P. 111—119. (in Russ.). http://doi.org/10.31431/1816-5524-2019-2-42-111-119
  37. Razjigaeva N., Ganzey L., Grebennikova T. et al. (2023). “Cold-Dry” and “Cold-Wet” Events in the Late Holocene, Southern Russian Far East. Climate. V. 11. P. 91. https://doi.org/10.3390/cli11040091
  38. Razjigaeva N. G., Grebennikova T. A., Ganzey L. A. et al. (2020). Recurrence of extreme floods in south Sakhalin Island as evidence of paleo-typhoon variability in North-Western Pacific since 6.6 ka BP. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 556. № 3. P. 109901. https://doi.org/10.1016/j.palaeo.2020.109901
  39. Razzhigaeva N. G., Ganzey L. A., Grebennikova T. A. et al. (2019). Paleoflood records within Sikhote-Alin foothills during last 2.2 ka. Izvestiya RAN. Seriya geograficheskaya. № 2. P. 85—99. (in Russ.). http://doi.org/10.31857/S2587-55662019285-99.
  40. Razzhigaeva N. G., Grebennikova T. A., Ganzey L. A. et al. (2022). Response of the Lake Ecosystem of the Lesser Kuril Ridge to Paleoclimatic and Seismic Events. Izv. Atmos. Oceanic Phys. V. 58. № 11. P. 1377—1397. http://doi.org/10.1134/S0001433822110068
  41. Reimer P., Austin W. E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0—55 kcal BP). Radiocarbon. V. 62. Iss. 4: IntCal20: Calibration Iss. P. 725—757. https://doi.org/10.1017/RDC.2020.41
  42. Rein B., Sirocko F., Lückge A. et al. (2005). El Niňo variability off Peru during the last 20,000 years. Paleoceanography and Paleoclimatology. V. 20. Iss. 4. P. 78—185. http://doi.org/10.1029/2004PA001099
  43. Sakaguchi Y. (1983). Warm and cold stages in the past 7600 years in Japan and their global correlation. Bulletin of the Department of geography, University of Tokyo. V. 15. P. 1—31.
  44. Stebich M., Rehfeld K., Schlütz F. et al. (2015). Holocene vegetation and climate dynamic of NE China based on the pollen record from Sihailongwan Maar Lake. Quat. Sci. Rev. V. 124. P. 275—289. http://doi.org/10.1016/J.QUASCIREV.2015.07.021
  45. Stott L., Cannariato K., Thunell R. et al. (2004). Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature. V. 431(7004). P. 56—59. http://doi.org/10.1038/nature02903
  46. Sun Y., Oppo D. W., Xiang R. et al. (2005). Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography and Paleoclimatology. V. 20. № 4. P. PA4005. http://doi.org/10.1029/2004PA001061
  47. Suzuki Y., Tada R., Nagashima K. et al. (2021). Extreme flood events and their frequency variations during the middle to late-Holocene recorded in the sediment of Lake Suigetsu, central Japan. The Holocene. V. 31(78). P. 121—133. http://doi.org/10.1177/0959683620961497
  48. Tunegolovets V. P. (2010). A comprehensive method for predicting the movement and intensity of typhoons. Trudy DVNIGMI. № 1. P. 189—202. (in Russ.).
  49. Walker M., Head M. J., Lowe J. et al. (2019). Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. of Quat. Sci. V. 34. Iss. 3. P. 173—186. https://doi.org/10.1002/jqs.3097
  50. Wanner H., Solomina O., Grosjean M. et al. (2011). Structure and origin of Holocene cold events. Quat. Sci. Rev. V. 30. Iss. 21. P. 3109—3123. https://doi.org https://doi.org/10.1016/J.QUASCIREV.2011.07.010
  51. Woodruff J. D., Donnelly J. P., Okusu A. (2009). Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quat. Sci. Rev. V. 28. Iss. 17. P. 1774—1785. https://doi.org/10.1016/j.quascirev.2009.02.005
  52. Yamamoto M., Wang F., Irino T. et al. (2021). A lacustrine biomarker record from Rebun Island reveals a warm summer climate in northern Japan during the early middle Holocene due to a stronger North Pacific High. Front. Earth Sci. V. 9. P. 704332. https://doi.org/10.3389/feart.2021.704332
  53. Zhang Z., Leduc G., Sachs J. P. (2014). El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands. Earth Planet. Sci. Lett. V. 404. P. 420—434. https://doi.org/10.1016/j. epsl.2014.07.013
  54. Zhou X., Liu Z., Yan Q. et al. (2019). Enhanced tropical cyclones intensity in the Western North Pacific during warm period over the last two Millennia. Geophys. Res. Lett. V. 46. P. 11959—11966. https://doi.org/10.1029/2019GL083504
  55. Zuenko Yu.I. (2007). Promyslovaya okeanologiya Yaponskogo morya (Fisheries Oceanography of the Japan Sea). Vladivostok: TINRO-centre (Publ.). 227 p. (in Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Study area. (a) — position of Sakhalin Island; (б) — Southern Sakhalin with position if study area and section with flood traces on eastern coast of the island; (в) — Yablochnaya River valley and position of studied section of peatbog № 322 with loam layers, deposited during strong floods. 1 — studied sections.

Baixar (502KB)
3. Fig. 2. Section of the peatbog in Yablochnaya River valley. 1 — peat; 2 — organic-mineral sediments; 3 — loam; 4 — soil; 5 — wood.

Baixar (887KB)
4. Fig. 3. Age-depth model with ages of strong floods (grey bars). ¹⁴C dates with standard deviations are shown in blue, the gray curve shows the 95 % confidence interval.

Baixar (115KB)
5. Fig. 4. Recurrence of supertyphoons and deep cyclones, associated with strong floods in western coast of South Sakhalin in Middle-Late Holocene (a) and thickness of loam layers, deposited by different-age floods (б).

Baixar (156KB)
6. Fig. 5. Reconstruction of the periods with strong floods compared with paleoclimatic data for Southern Sakhalin and paleogeographical records for Western Pacific. (а) — paleoclimatic data for Southern Sakhalin (Mikishin, Gvozdeva, 2017, 2019; Mikishin et al., 2021); (б) — ash content of the peat in the section in Yablochnaya River valley (A) and Naiba River basin (Б); (в) — periods of different intensity floods (western coast, Yablochnaya River basin); (г) — periods of strong floods (eastern coast, Naiba River basin); (д) — LOI of the peatbogs within Ishikari River basin, Western Hokkaido and period with strong floods, A, Б — section located near the river channel, В — section located further from the river channel (Ishii et al., 2017); (е) — periods of extreme floods on south of the Honshu Island (Suzuki et al., 2021); (ж) — periods of high storm activity, Kamikoshiki Island, South Japan (Woodruff et al., 2009); (з) — frequency (per 100 years) of El Niño events (Moy et al., 2002); (и) — sea surface temperature (SST) records, Okinawa Trough regions, °C (Sun et al., 2005); (к) — SST records in the western tropical zone of the Pacific Ocean, °C (Stott et al., 2002; Park et al., 2021).

Baixar (706KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024