Debris flow processes on lateral moraines of mountain glaciers (analytical review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As a result of climate change there have been high rates of degradation of mountain glaciers in recent years. During deglaciation in the territories previously occupied by glaciers, moraines of various morphogenetic types remain deposited by them, connected with massifs of glacial-colluvial and other deposits. The most actively involved in debris flow processes are massifs of terminal moraines with extended steep ledges, on which debris flow cuts and furrows develop.

Much less often, debris flow original sites are formed on lateral moraines, but debris flows can reach catastrophic proportions. The analysis of publications and of multi-time satellite images revealed data on the formation of debris flow original sites of various types in the areas of lateral moraines of mountain glaciers, pockets of lateral moraines filled with slope and glacial deposits, as well as lakes and streams inside them. Similar debris flow original sites have been characterized for the Central Caucasus, the Andes, the Hindu Kush, the Himalayas and Tibet. The largest debris flow disasters with original sites in areas of lateral moraines were outbursts of Palcacocha lakes in Peru in 1941 and Chorabari in India in 2013 with a death toll of up to 6054, as well as the outburst of South Lhonak Lake in Sikkim (India) in 2023. In areas of lateral moraines of valley glaciers connected with moraine pedestals of former tributary glaciers, the volume of mass transport of debris flows can reach 6.5 million m3 (lateral moraine of the Gangotri glacier in the Himalayas in 2017). The progress of debris flow processes on lateral moraines of mountain glaciers must be taken into account when developing mountain territories both in areas near lateral moraines and at a considerable distance from them.

About the authors

M. Yu. Bekkiev

High-Mountain Geophysical Institute

Email: inrush@bk.ru
Russian Federation, Nalchik

M. D. Dokukin

High-Mountain Geophysical Institute

Author for correspondence.
Email: inrush@bk.ru
Russian Federation, Nalchik

M. Ch. Zalikhanov

High-Mountain Geophysical Institute

Email: inrush@bk.ru
Russian Federation, Nalchik

R. Kh. Kalov

High-Mountain Geophysical Institute

Email: inrush@bk.ru
Russian Federation, Nalchik

L. M. Fedchenko

High-Mountain Geophysical Institute

Email: inrush@bk.ru
Russian Federation, Nalchik

A. R. Akaev

High-Mountain Geophysical Institute

Email: inrush@bk.ru
Russian Federation, Nalchik

References

  1. Active deformation around South Lhonak lake in Sikkim, India. By Dave Petley 12 October 2023 [Electronic data]. Access way: https://eos.org/thelandslideblog/south-lhonak-lake-2 (access date: 26.12.2023).
  2. Akaev A.R., Shidugov I.Zh. (2023). The use of UAVs for monitoring exogenous processes in the glacial zone (using the example of the Mizhirgi glacier). In: Sovremennye problemy geologii, geofiziki i geoekologii Severnogo Kavkaza. V. XIII. Moscow: IIET RAN (Publ.). P. 425–430. (in Russ.)
  3. Allen S.K., Rastner I.P., Arora I.M. et al. (2015). Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides. V. 13. P. 1479–1491. http://dx.doi.org/10.1007/s10346-015-0584-3
  4. Ash K.T. (2020). Paraglacial reworking of lateral moraine slopes, sharp-crested lateral moraines and alluvial fans buttressed by lateral moraines. Halifax, N.S.: Saint Mary’s University. 135 p. http://library2.smu.ca/xmlui/handle/01/29350
  5. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh. et al. (2021). Extreme debris flow processes on moraine pedestals in 2018–2021 (based on remote sensing data). GeoRisk World. V. XV. № 3. P. 40–48. (in Russ.). https://doi.org/10.25296/1997-8669-2021-15-3-40-48.
  6. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh. et al. (2021б). Formation of debris flow cuts in the areas of lateral moraines of valley glaciers. Vestnik Vladikavkazskogo nauchnogo tsentra. V. 21. № 3. P. 48–55. (in Russ.). https://doi.org/10.46698/m6092-4144-2648-e
  7. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh. et al. (2023). Identification of signs of preparation of catastrophic slope processes for the prevention of emergency situations. In: Bezopasnost’ naseleniya ot bystrorazvivayushchikhsya opasnykh prirodnykh yavlenii. XXV Mezhdunarodnaya nauchno-prakticheskaya konferentsiya po problemam zashchity naseleniya i territorii ot chrezvychainykh situatsii (v ramkakh provedeniya XIV Mezhdunarodnogo salona sredstv obespecheniya bezopasnosti “Kompleksnaya bezopasnost’-2023”). Moscow: VNII GOChS (FC) (Publ.). P. 7–18. (in Russ.)
  8. Bushueva I.S. (2013). Kolebaniya lednikov na Central’nom i Zapadnom Kavkaze po kartograficheskim, istoricheskim i bioindikatsionnym dannym za poslednie 200 let (Fluctuations of glaciers in the Central and Western Caucasus according to cartographic, historical and bioindication data for the last 200 years). PhD thesis. Moscow: Institut geografii RAN. 169 p. (in Russ.)
  9. Dobhal D.P., Gupta A.K., Mehta M. et al. (2013). Kedarnath disaster: facts and plausible causes. Current Science. V. 105. № 2. P. 171–174.
  10. Dokukin M.D. (1988). On the issue of typification of moraine relief (on the example of the North Caucasus. Trudy VGI. V. 73. P. 58-67. (in Russ.)
  11. Dokukin M.D. (2014). Excurrent lakes outburst in 2012–2013 (based on materials of RS). In: Sbornik trudov Severo-Kavkazskogo instituta po proektirovaniyu vodokhozyaistvennogo i meliorativnogo stroitel’stva. V. 20. Pyatigorsk: JSC Sevkavgiprovodkhoz (Publ.). P. 82–97. (in Russ.)
  12. Dokukin M.D., Chernomorets S.S., Savernyuk E.A. (2016). Moraine pedestals – initiation zones of catastrophic glacial debris flows. In: Selevye potoki: katastrofy, risk, prognoz, zashchita. Materialy IV Mezhdunarodnoi konferentsii. Irkutsk: Sochava Institute of Geography SB RAS (Publ.). P. 67–71. (in Russ.)
  13. Dokukin M.D., Chernomorets S.S., Savernyuk E.A. et al. (2019). Barsem debris flow disaster in the Pamirs in 2015 and its analogues in the Central Caucasus. Georisk World. V. XIII. № 1. P. 26–36. (in Russ.) https://doi.org/10.25296/1997-8669-2019-13-1-26-36
  14. Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh. et al. (2020). Conditions and mechanisms of the Bashkara lakes outbursts in the Adyl-Su River valley (Central Caucasus). In: Sovremennye problemy geologii, geofiziki i geoekologii Severnogo Kavkaza. Kollektivnaya monografiya po materialam X Vserossiiskoi nauchno-tekhnicheskoi konferentsii v 2-kh chastyakh. Chast’ 2. Groznyj: OOO “Format” (Publ.). P. 369–375. (in Russ.)
  15. Dusik J.-M., Neugirg F., Haas F. (2019). Slope Wash, Gully Erosion and Debris Flows on Lateral Moraines in the Upper Kaunertal, Austria. In: Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. Heckmann T., Morche D. (Eds.). P. 177–196. https://doi.org/10.1007/978-3-319-94184-4_11
  16. Geologicheskii slovar’. Tom pervyi (Geological dictionary. Volume One). (1978). Edited by K.N. Paffengolts. Moscow: Nedra (Publ.). 486 p. (in Russ.)
  17. Human cost of disasters – An overview of the last 20 years 2000–2019. UN Office for Disaster Risk Reduction; Centre for Research on the Epidemiology of Disasters. [Electronic data]. Access way: https://reliefweb.int/report/world/human-cost-disasters-overview-last-20-years-2000-2019 (access date: 04.02.2023).
  18. Kharchenko S., Tsyplenkov A., Petrakov D. et al. (2020). Causes and consequences of the streambed re-structuring of the Koiavgan Creek (North Caucasus, Russia). E3S Web Conf. V. 163. 02003. P. 1–6. http://dx.doi.org/10.1051/e3sconf/202016302003
  19. Kharchenko S.V., Fedin A.V., Golosov V.N. (2021). Denudation rates in the mountain periglacial regions: research methods and result. Geomorfologiya. V. 52. № 1. P. 3–18. (in Russ.) http://dx.doi.org/10.31857/S0435428121010065
  20. Klimeš J., Novotný J., Novotná I. et al. (2016). Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides. V. 13. № 6. P. 1479–1491. http://dx.doi.org/10.1007/s10346-016-0724-4
  21. Kumar A., Bhambri R., Tiwari S.K. et al. (2019). Evolution of debris flow and moraine failure in the Gangotri Glacier region, Garhwal Himalaya: Hydro-geomorphological aspects. Geomorphology. V. 333. P. 152–166. https://doi.org/10.1016/j.geomorph.2019.02.015
  22. Okishev P.A. (2017). Gornye ledniki i morfoskul’ptura lednikovykh otlozhenii: (nauchno-populyarnoe infograficheskoe obozrenie): uchebnoe posobie (Mountain glaciers and morphosculpture of glacial deposits: textbook: [for university students in the fields of “Geography” and “Geology”: (popular science infographic review)]. Tomsk: Tomsk State University (Publ.). 204 p. (in Russ.)
  23. Rao K.H.V.D., Rao V.V., Dadhwal V.K. et al. (2014). Kedarnath flash floods: a hydrological and hydraulic simulation study. Current Sci. V. 106. № 4. P. 598–603. https://www.jstor.org/stable/24100068
  24. Repin A.G. (1980). Lateral and terminal moraines of surging glaciers. Materialy glyatsiologicheskikh issledovanii. V. 39. P. 209–212. (in Russ.)
  25. Sattar A., Goswami A., Kulkarni A.V. et al. (2021). Future Glacial Lake Outburst Flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology. V. 388:107783. https://doi.org/10.1016/j.geomorph.2021.107783
  26. SP 479.1325800.2019. Inzhenernye izyskaniya dlya stroitel’stva v rayonakh razvitiya selevykh protsessov: svod pravil. Elektronnyi fond normativno-tekhnicheskoi i normativno-pravovoi informatsii Konsortsiuma “Kodeks” (SP 479.1325800.2019. Engineering surveys for construction in the areas of debris flow development. General requirements. Electronic fund of regulatory, technical and regulatory information of the Consortium “Codex” Docs.cntd.ru) [Electronic data].
  27. Access way: https://docs.cntd.ru/document/565565870 (access date: 02.04.2023).
  28. Tavasiev R.A. (2018). Degradation of the Karaugom glacier. Part III. Periglacial lakes. Vestnik Vladikavkazskogo nauchnogo tsentra. V. 18. № 4. P. 62–70. (in Russ.) https://doi.org/10.23671/vnc.2018.4.23793
  29. Vaskov I.M. (2006). Periodic debris flow emissions in the Fastag River valley and their connection with modern tectonics. Vestnik Vladikavkazskogo nauchnogo tsentra. V. 6. № 1. P. 28–32. (in Russ.)
  30. Vaskov I.M. (2016). Catastrophic collapses: origin and prognosis (Katastroficheskie obvaly: proiskhozhdenie i prognoz). Vladikavkaz: LLC NPKP “MAVR” (Publ.). 370 p. (in Russ.)
  31. Wang J., Cui P., Wang H.et al. (2022). Novel Approach to Estimating Glacial Moraine Reserves in the Parlung Tsangpo Basin. Front. Earth Sci. V. 10. 853089. http://dx.doi.org/10.3389/feart.2022.853089
  32. Wang S., Yang Y., Gong W. et al. (2021). Reason Analysis of the Jiwenco Glacial Lake Outburst Flood (GLOF) and Potential Hazard on the Qinghai-Tibetan Plateau. Remote Sens. V. 13 (16). 3114. https://doi.org/10.3390/rs13163114
  33. Watanabe T., Nakamura N. (2004). Active landslides on the lateral moraines in the Kanchanjunga Conservation Area, eastern Nepal Himalaya. Himalayan J. Health Sci. V. 2. Iss. 4 (Special Issue). P. 273. http://dx.doi.org/10.3126/hjs.v2i4.946
  34. Woerkom T., Steiner J.F., Kraaijenbrink1 P.D.A. et al. (2019). Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya. Earth Surf. Dynam. № 7. P. 411–427. https://doi.org/10.5194/esurf-7-411-2019
  35. Zheng G., Mergili M., Emmer A. et al. (2021). The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment. The Cryosphere. V. 15. № 7. P. 3159–3180. https://doi.org/10.5194/tc-15-3159-2021

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A section of the pocket of the right lateral moraine of the Chorabari glacier before and after the Chorabari Lake outburst on satellite images: (a) –26.09.2010 Landsat 4-5 TM, (б) – 09.11.2011 WorldView-2, (в) – 14.12.2013 Pleiades-1A. The yellow line is the ridge of the lateral moraine

Download (513KB)
3. Fig. 2. The section of the pocket of the left lateral moraine of the Dykh-Kotyu-Bugaysu glacier (Dykh-Su) before and after the debris flow on July 5, 2017 on satellite images: (a) – 19.09.2011 GeoEye-1, (б) – 06.10.2017 GeoEye-1, on a helicopter photo by M.D. Dokukin: (в) – 19.09.2023. 1 – ridges of lateral moraines; 2 – lake-like area; 3 – debris flow cut; 4 – debris flow deposits

Download (1MB)
4. Fig. 3. Jinwuco Lake in the valley of the Nidоu Zangbo River in Lhari County (Tibet, China) before and after the outburst in 2020 on Bing Maps and Google Earth satellite images: (a) – 24.12.2017 Pleiades-1A, (б, г) – 17.10.2021 WorldView-2, (в) – 29.11.2016 Pleiades-1A

Download (915KB)
5. Fig. 4. South Lhonak Lake in the Teesta River valley (Sikkim, India) before and after the outburst in 10.04.2023 on Sentinel-2 satellite images: (а) – 26.09.2023, (б) – 06.10.2023. 1 – the boundary of the lake on 26.09.2023; 2 – the boundary of the lake on 06.10.2023; 3 – the water flow flowing in and out of the lake; 4 – the boundaries of the landslide zone; 5 – the crest of the lateral moraine, 6 – the ridge of the median moraine

Download (654KB)
6. Fig. 5. The section of the left lateral moraine of the Gangotri glacier and the moraine pedestal of the Meru Bamak glacier in the upper reaches of the Bhagirathi River (Himalayas, India) before and after the debris flow in the period from July 16 to 19, 2017 on Google Earth satellite images: (a) –26.08.2014 Pleiades-1A, (б) – 07.10.2017 Pleiades-1A. 1 – ridge of the left lateral moraine of the Gangotri glacier; 2 – ridges of the lateral moraines of the moraine pedestal of the Meru Bamak glacier; 3 – debris flow cut; 4 – debris flow deposits

Download (1MB)
7. Fig. 6. A section of the moraine complex of the former left tributary of the Batswat glacier in the valley of the left tributary of the Ishkoman River (Pakistan) with a terraced moraine pedestal before and after the formation of the cut in July-August 2018 on Google Earth and Bing Maps satellite images: (a) – 10.07.2017 Pleiades-1A, (б) – 26.05.2020 WorldView-2. 1 – terraced moraine pedestal; 2 – terraced rock glacier; 3 – debris flow cut

Download (1MB)
8. Fig. 7. The site of the debris flow original site on the right lateral moraine of the Mizhirgi glacier before and after the debris flow on 13.08.2022 (photo from the quadcopter): (a) – 26.07.2022, (б) – 28.08.2022

Download (909KB)
9. Fig. 8. A section of the lateral moraine of the Mizhirgi glacier: (a) – Google Earth satellite image 28.10.2019 Pleiades-1A, (б) – photo from the quadcopter 26.07.2022, (в) – photo from the quadcopter 28.08.2022. The red line is the ridge of the lateral moraine of the XXI century, the yellow line is the ridge of the lateral moraine of the little Ice Age, the blue line is the watercourse bed in the pocket of the lateral moraine, the red arrows indicate the location of the fracture of the displacement of the ridge of the lateral moraine

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences