Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We consider variational inequalities with invertible operators As: W01,pΩW1,p'Ω, s in divergence form and constraint set V=vW01,pΩ: φvψ a.e. in Ω where Ω is a nonempty bounded open set in nn2, p > 1 and φ,ψ: Ω¯ are measurable functions. Under the assumptions that the operators As G-converge to an invertible operator A: W01,pΩW1,p'Ω, int {φ = ψ} ≠ ∅, measφ=ψΩ=0 and there exist functions φ¯, ψ¯W01,pΩ such that φφ¯ψ¯ψ a.e. in Ω and measφψ\φ¯ψ¯=0 we establish the weak convergence in W01,pΩ of the solutions us of the specified variational inequalities to the solution u of a similar variational inequality with the operator A and the constraint set V. The fundamental difference between the considered case and the previously studied case, where meas {φ = ψ} = 0 is that, in general, the functionals Asus do not converge to Au even weakly in W–1, p' (Ω) and the energy integrals <Asus, us> do not converge to <Au, u>.

Texto integral

Acesso é fechado

Sobre autores

A. Kovalevsky

Krasovskii Institute of Mathematics and Mechanics UB RAS; Ural Federal University

Autor responsável pela correspondência
Email: alexkvl71@mail.ru
Rússia, Yekaterinburg; Yekaterinburg

Bibliografia

  1. Spagnolo S. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche // Ann. Sc. Norm. Super. Pisa. Cl. Sci. (3). 1968. Vol. 22. No. 4. P. 571–597.
  2. Жиков В.В., Козлов С.М., Олейник О.А., Ха Тьен Нгоан. Усреднение и G-сходимость дифференциальных операторов // УМН. 1979. Т. 34. № 5 (209). С. 65–133.
  3. Панков А.А. Об усреднении и G-сходимости нелинейных эллиптических операторов дивергентного вида // Докл. АН СССР. 1984. Т. 278. № 1. С. 37–41.
  4. Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators. Mathematics and its Applications. V. 422. Dordrecht: Kluwer Academic Publishers, 1997.
  5. Ковалевский А.А. G-сходимость и усреднение нелинейных эллиптических операторов дивергентного вида с переменной областью определения // Изв. РАН. Сер. матем. 1994. Т. 58. № 3. С. 3–35.
  6. Murat F. Sur l’homogeneisation d’inequations elliptiques du 2ème ordre, relatives au convexe p.p. dans . Publ. Laboratoire d’Analyse Numérique, No. 76013. Univ. Paris VI, 1976.
  7. Kovalevsky A.A. Convergence of solutions of nonlinear elliptic variational inequalities with measurable bilateral constraints // Results Math. 2023. Vol. 78. No. 4. Paper No. 145. 22 p. https://doi.org/10.1007/s00025-023-01921-7
  8. Dal Maso G., Defranceschi A. Convergence of unilateral problems for monotone operators // J. Anal. Math. 1989. Vol. 53. No 1. P. 269–289. https://doi.org/10.1007/BF02793418
  9. Boccardo L., Murat F. Homogenization of nonlinear unilateral problems / In: G. Dal Maso, G.F. Dell’Antonio (eds). Composite Media and Homogenization Theory, Prog. Nonlinear Differ. Equ. Appl. Vol. 5. Boston: Birkhäuser, 1991. P. 81–105.
  10. Kovalevsky A.A. Nonlinear variational inequalities with variable regular bilateral constraints in variable domains // Nonlinear Differ. Equ. Appl. 2022. Vol. 29. No. 6. Paper No. 70. 24 p. https://doi.org/10.1007/s00030-022-00797-w
  11. Evans L.C. Partial Differential Equations. Graduate Studies in Mathematics. Vol. 19. Providence, Rhode Island: American Mathematical Society, 1998.
  12. Lions J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, Gauthier-Villars, 1969.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024