Kinetic Regularities of Nanogold Synthesis. Auto-Catalytic Mechanism of the Process

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The work is devoted to the study of the kinetics of colloidal gold formation. On the basis of experimental data, a kinetic model including the stages of Au3+ and Au1+ reduction with the formation of metallic gold nanoparticles was developed. A kinetic feature of the process is the presence of a long induction period (several hours), while an increase in the induction period is observed with increasing concentration of the initial reagent (Au3+). Kinetic modeling shows that the induction period is determined by the process of reverse oxidation of Au0 with intermediate formation of one-electron oxidized gold. The principal result is the demonstration of the fact of acceleration of the process gold nanoparticles formation (reduction of the induction period) when the final product (Au0) is introduced into the system, which is an unambiguous sign of the autocatalytic process. Estimates of rate constants of all elementary stages of the reaction have been made, the slowest process being the first stage of Au3+ reduction.

Full Text

Restricted Access

About the authors

S. D. Varfolomeev

Lomonosov Moscow State University; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: s.tsybenova@gmail.com

Corresponding Member of the RAS, Institute of Physicochemical Foundations of the Functioning of Neural Network and Artificial Intellegence, Department of Chemistry

Russian Federation, 119991 Moscow; 119334 Moscow

V. N. Kalinichenko

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: s.tsybenova@gmail.com
Russian Federation, 119334 Moscow

Yu. A. Kuznetsov

LLC “RG Irkutskgeophysics 3”

Email: s.tsybenova@gmail.com
Russian Federation, 664039 Irkutsk

I. V. Gachok

Lomonosov Moscow State University

Email: s.tsybenova@gmail.com

Department of Chemistry

Russian Federation, 119991 Moscow

S. B. Tsybenova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: s.tsybenova@gmail.com
Russian Federation, 119334 Moscow

References

  1. Faraday M. Experimental researches in chemistry and physics. London, Taylor & Francis, 1859. 496 p.
  2. Сергеев Г.Б. Нанохимия: учеб. пособие. М.: КДУ, 2015. 284 с.
  3. Lo Nigro R., Fiorenza P., Pécz B., Eriksson J. // Nanomaterials. 2022. V. 12. № 19. P. 3319 https://doi.org/10.3390/nano12193319
  4. Апяри В.В., Дмитриенко С.Г., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. // Журн. аналит. химии. 2019. Т. 74. № 1. С. 26‒38. https://doi.org/10.1134/S0044450219010055
  5. Дурович Е.А., Евтушенко Е.Г., Сенько О.В., Степанов Н.А., Ефременко Е.Н., Еременко А.В., Курочкин И.Н. // Вестник РГМУ. 2018. № 6. С. 27–35. https://doi.org/10.24075/vrgmu.2018.088
  6. Варфоломеев С.Д. Молекулярные основы интеллекта. М.: МГУ, 2024. 290 с.
  7. Коршунов А.В., Кашкан Г.В., Нгуен Х.Т.Т., Зыонг Ш.В. // Изв. ТПУ. 2011. Т. 318. № 3. С. 12‒18. http://earchive.tpu.ru/handle/11683/3644
  8. Haruta M. // Gold Bull. 2004. V. 37. P. 27–36. https://doi.org/10.1007/BF03215514
  9. Hutchings G.J. Catalysis by gold: Recent advances in oxidation reactions. In: Nanotechnology in catalysis. Nanostructure science and technology. Zhou B., Han S., Raja R., Somorjai G.A. (eds.). Springer, New York, NY, 2007. pp. 39–54. https://doi.org/10.1007/978-0-387-34688-5_4
  10. Turkevich J., Stevenson P.C., Hillier J. // Discuss. Faraday Soc. 1951. V. 11. P. 55–75. https://doi.org/10.1039/DF9511100055
  11. Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thünemann A.F., Kraehnert R. // J. Amer. Chem. Soc. 2010. V. 132. № 4. P. 1296–1301. https://doi.org/10.1021/ja906506j
  12. Patungwasa W., Hodak J.H. // Mater. Chem. Phys. 2008. V. 108. № 1. P. 45–54. https://doi.org/10.1016/j.matchemphys.2007.09.001
  13. Ахметов Н.С. Неорганическая химия. М.: Высшая школа. 1975. 672 с.
  14. Варфоломеев С.Д. Динамика неустойчивости. Кинетическое моделирование и методы управления. М.: Научный мир. 2021. 282 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental (dots – Dt /D∞, D – optical density [7]) and calculated data (solid lines – [ ]/[ ], [ ] – concentration of gold associates) on the kinetics of gold sol formation and the results of kinetic modeling (see equations (3) and (4) below) of the process in accordance with the kinetic scheme (2) with varying the initial concentration of Au3+, M: 2 × 10–5 (1); 5 × 10–5 (2); 1 × 10–4 (3); 1.5 × 10–4 (4). Calculation parameters: k1R0 = 9.43 × 10–3 min–1, k3R0 = 2.3 × 10–4 min–1, k2 = 3 × 104 M–1 min–1. Experimental parameters: T = 20°C, pH 5.0, sodium citrate concentration 1.5 × 10–3 M; gold chloride concentration, M: 2 × 10–5 (1), 5 × 10–5 (2), 1 × 10–4 (3), 1.5 × 10–4 (4). The experimental data from [7] were digitized using the GetData Graph Digitizer 2.26 program.

Download (111KB)
3. Fig. 2. Kinetic accumulations of the dispersed gold phase in the presence of the oxidation process by the action of Au3+ (curve 2, k2 = 3 × 104 M–1 min–1, experimental data – line with dots) and in the absence of this process (curve 1, k2 = 0).

Download (74KB)
4. Fig. 3. Kinetic curves of the formation of gold nanoparticles, intermediate Au1+ and initial Au3+ with variation of the initial concentration of Au3+, M: 2 × 10–5 (1), 5 × 10–5 (2), 1 × 10–4 (3), 1.5 × 10–4 (4).

Download (177KB)
5. Fig. 4. Kinetic responses of system (3), (4) with variation of the parameter k1R0, min–1: 6 × 10–3 (1), 9.44 × 10–3 (2), 22.5 × 10–3 (3) and [ ](0) = 2 × 10–6 M, [Au3+](0) = 1 × 10–4 M, [Au1+](0) = 0.

Download (145KB)
6. Fig. 5. Kinetic responses of system (3), (4) upon introduction of “seed” [ ](0) = 1 × 10–6 M, [Au1+](0) = 0 with variation of the initial concentration of Au3+, M: 2 × 10–5 (1), 5 × 10–5 (2), 1 × 10–4 (3) 1.5 × 10–4 (4).

Download (157KB)
7. Fig. 6. Experimental (dotted line) [7] and calculated (solid line) data (3), (4) at [Au3+](0) = 1 × 10–4 M, [Au1+](0) = 5 × 10–6 M, activation energy ∆H*(k3) = 10 kcal mol–1, ∆H*(k2) = 5 kcal mol–1, ∆H*(k1) = 6.1 kcal mol–1 and different temperatures T: 60°C (1), 40°C (2), 20°C (3).

Download (100KB)
8. Fig. 7

Download (10KB)

Copyright (c) 2024 Russian Academy of Sciences