The bxd pre from bithorax complex of Drosophila melanogaster has weak insulator activity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The autonomous functioning of regulatory domains in the Bithorax complex (BX-C) of Drosophila melanogaster is maintained by boundaries (insulators) that prevent inappropriate enhancer–promoter interactions. Polycomb response elements (PREs) maintain epigenetic memory within regulatory domains and are often located near insulators, enhancing their blocking activity. The bxd PRE is a well-characterized silencer that regulates the bxd/pbx domain of the Ubx gene in the first abdominal segment. We used a boundary replacement strategy to assess the insulator activity of the bxd PRE. Substituting the bxd PRE for the Fab-7 boundary, which separates the Abd-B regulatory domains in the BX-C, revealed that the bxd PRE has weak insulator activity.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Ibragimov

Institute of gene biology, Russian academy of science

Хат алмасуға жауапты Автор.
Email: airat.ibra@gmail.com
Ресей, Moscow

O. Kyrchanova

Institute of gene biology, Russian academy of science

Email: airat.ibra@gmail.com
Ресей, Moscow

Y. Vorontsova

Institute of gene biology, Russian academy of science

Email: airat.ibra@gmail.com
Ресей, Moscow

E. Kozlov

Institute of gene biology, Russian academy of science

Email: airat.ibra@gmail.com
Ресей, Moscow

V. Dubrovskaya

Institute of gene biology, Russian academy of science

Email: airat.ibra@gmail.com
Ресей, Moscow

P. Georgiev

Institute of gene biology, Russian academy of science

Email: airat.ibra@gmail.com

Academician of the RAS

Ресей, Moscow

Әдебиет тізімі

  1. Kyrchanova O., Sokolov V., Georgiev P. Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems // International journal of molecular sciences. 2023. 24(3).
  2. Batut P.J., Bing X.Y., Sisco Z., et al. Genome organization controls transcriptional dynamics during development // Science (New York, NY). 2022. Vol. 375, N6580. P. 566–70.
  3. Bender W., Akam M., Karch F., Beachy P.A., Peifer M., Spierer P., et al. Molecular Genetics of the Bithorax Complex in Drosophila melanogaster // Science (New York, NY). 1983. Vol. 221, N4605. P. 23–9.
  4. Maeda R.K., Karch F. The open for business model of the bithorax complex in Drosophila // Chromosoma. 2015. Vol. 124, N3. P.293–307.
  5. Kuroda M.I., Kang H., De S., Kassis J.A. Dynamic Competition of Polycomb and Trithorax in Transcriptional Programming // Annual review of biochemistry. 2020. Vol. 89. P. 235–53.
  6. Postika N., Schedl P., Georgiev P., Kyrchanova O. Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster // Scientific reports. 2021. Vol. 11, N1. P. 4156.
  7. Kyrchanova O., Kurbidaeva A., Sabirov M., Postika N., Wolle D., Aoki T., et al. The bithorax complex iab-7 Polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary // PLoS genetics. 2018. Vol. 14, N8. e1007442.
  8. Brown J.L., Zhang L., Rocha P.P., Kassis J.A., SunM.A. Polycomb protein binding and looping in the ON transcriptional state // Science advances. 2024. Vol. 10, N17.eadn1837.
  9. Tillib S., Petruk S., Sedkov Y., Kuzin A., Fujioka M., Goto T., et al. Trithorax- and Polycomb-group response elements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences // Molecular and cellular biology. 1999. Vol 19, N7. P.5189–202.
  10. Dellino G.I., Tatout C., Pirrotta V. Extensive conservation of sequences and chromatin structures in the bxd polycomb response element among Drosophilid species // The International journal of developmental biology. 2002. Vol. 46, N1. P. 133–41.
  11. Wolle D., Cleard F., Aoki T., Deshpande G., Schedl P., Karch F. Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex // Molecular and cellular biology. 2015. Vol. 35, N21. P. 3739–52.
  12. Mihaly J., Hogga I., Gausz J., Gyurkovics H., Karch F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element // Development (Cambridge, England). 1997. Vol. 124, N9. P. 1809–20.
  13. Kyrchanova O., Sabirov M., Mogila V., Kurbidaeva A., Postika N., Maksimenko O., et al. Complete reconstitution of bypass and blocking functions in a minimal artificial Fab-7 insulator from Drosophila bithorax complex // Proceedings of the National Academy of Sciences of the United States of America. 2019. Vol. 116, N.27. P. 13462–7.
  14. Mohd-Sarip A., Venturini F., Chalkley G.E., Verrijzer C.P. Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression // Molecular and cellular biology. 2002. Vol. 22, N21. P. 7473–83.
  15. Fritsch C., Brown J.L., Kassis J.A., Müller J. The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene // Development (Cambridge, England). 1999. Vol. 126, N17. P. 3905–13.
  16. Majumder P., Roy S., Belozerov V.E., Bosu D., Puppali M., Cai H.N. Diverse transcription influences can be insulated by the Drosophila SF1 chromatin boundary // Nucleic acids research. 2009. Vol. 37, N13. P. 4227–33.
  17. Hagstrom K., Muller M., Schedl P. Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex // Genes & development. 1996. Vo. 10, N24. P. 3202–15.
  18. Ray P., De S., Mitra A., Bezstarosti K., Demmers J.A., Pfeifer K., et al. Combgap contributes to recruitment of Polycomb group proteins in Drosophila // Proceedings of the National Academy of Sciences of the United States of America. 2016. Vol. 113, N14. P. 3826–31.
  19. Erokhin M., Brown J.L., Lomaev D., Vorobyeva N.E., Zhang L., Fab L.V., et al. Crol contributes to PRE-mediated repression and Polycomb group proteins recruitment in Drosophila // Nucleic acids research. 2023. Vol. 51, N12. P. 6087–100.
  20. Ohtsuki S., Levine M. GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo // Genes & development. 1998. Vol. 12, N21. P. 3325–30.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the Bithorax complex. The curly brackets of different colors indicate the regulatory domains, the gray vertical lines are the domain boundaries, the arrows indicate homeotic genes. The pink rectangles indicate the embryonic enhancers in the abx/bx and bxd/pbx domains, the green rectangles indicate the PRE. The region containing the bxd PRE is shown on the left below. The blue ovals indicate the binding sites of the Pho protein, the yellow ones indicate the GAF protein. The scheme of the deletion at the Fab-7 boundary in the Fab-7attP50 line is shown on the right. The lilac rectangles indicate the sites of hypersensitivity to DNase I. The gray arrow indicates the attP site for integration of the studied sequence, the triangles indicate the lox and frt sites for excision of the plasmid body and the rosy marker.

Жүктеу (67KB)
3. Fig. 2. Results of replacing the Fab-7 boundary with bxd PRE derivatives. The bxd PRE fragments used for integration into the Fab-7attP50 platform are shown at the top. The green rectangles indicate the DNase I hypersensitive sites (HS1, HS2), and the magenta rectangles indicate the regions of the bxd s1 and s2 enhancers. The binding sites of the Pho and GAF ​​proteins are indicated by yellow and blue ovals, respectively. Cuticular preparations of abdominal segments of wild-type (wt), Fab-7attP50, bxd PRE1090, bxd PREprox, bxd PREdist, bxd PREdist mGAGA, and bxd PREdist mPho flies. The upper panel shows the morphology of abdominal segments A3–A6 (numbered) in the light field. Red arrows indicate deviations from the normal phenotype. Lower panel: dark-field morphology of tergites A5 and A6.

Жүктеу (348KB)

© Russian Academy of Sciences, 2025