SYNERGISTIC EFFECT OF THE COMBINED ACTION OF TARGETED AND PHOTODYNAMIC THERAPY ON HER2-POSITIVE BREAST CANCER

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Development of combined schemes for the treatment of oncological diseases is a promising strategy to improve the effectiveness of antitumor therapy. This paper shows the fundamental possibility of multiplying the antitumor effect by combining targeted and photodynamic therapy. It has been demonstrated that sequential treatment of HER-2 positive breast cancer cells with the targeted toxin DARPin-LoPE and the photoactive compound Photodithazine leads to a synergistic enhancement of their effect. In the future, this approach is intended to achieve the maximum therapeutic effect while minimizing the risks of negative side effects.

Авторлар туралы

I. Balalaeva

Lobachevsky State University of Nizhny Novgorod

Хат алмасуға жауапты Автор.
Email: irin-b@mail.ru
Russian Federation, Nizhny Novgorod

L. Krylova

Lobachevsky State University of Nizhny Novgorod

Email: biomem@mail.ru
Russian Federation, Nizhny Novgorod

M. Karpova

Lobachevsky State University of Nizhny Novgorod

Email: biomem@mail.ru
Russian Federation, Nizhny Novgorod

A. Shulga

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: biomem@mail.ru
Russian Federation, Moscow

E. Konovalova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: biomem@mail.ru
Russian Federation, Moscow

E. Guryev

Lobachevsky State University of Nizhny Novgorod

Email: biomem@mail.ru
Russian Federation, Nizhny Novgorod

S. Deyev

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; I.M. Sechenov First Moscow State Medical University

Хат алмасуға жауапты Автор.
Email: biomem@mail.ru
Russian Federation, Moscow; Russian Federation, Moscow

Әдебиет тізімі

  1. Harbeck N., Penault-Llorca F., Cortes J., et al. // Nature Reviews Disease Primers. 2019. V. 5. № 66.
  2. Gerber D.E. // American Family Physician. 2008. V. 77. № 3. P. 311–319.
  3. Padma V.V. // Biomedicine (Taipei). 2015. V. 5. № 4. P. 19.
  4. Iqbal N., Iqbal N. // Molecular Biology International. 2014.
  5. Higgins M.J., Baselga J. // Journal of Clinical Investigation. 2011. V. 121. № 10. P. 3797–3803.
  6. Tolmachev V.M., Chernov V.I., Deyev S.M. // Russ. Chem. Rev. 2022. V. 91. RCR5034.
  7. Sokolova E.A., Shilova O.N., Kiseleva D.V., et al. // International Journal of Molecular Sciences. 2019. V. 20. № 10.
  8. Shapira A., Benhar I. // Toxins (Basel). 2010. V. 2. № 11. P. 2519–2583.
  9. Sabnis A.J., Bivona T.G. // Trends in Molecular Medicine. 2019. V. 25. №3. P. 185–197.
  10. Plana D., Palmer A.C., Sorger P.K. // Cancer Discovery. 2022. V. 12. № 3. P. 606–624.
  11. Boshuizen J., Peeper D.S. // Molecular Cell. 2020. V. 78. № 6. P. 1002–1018.
  12. Agostinis P., Berg K., Cengel K.A. et al. // CA: A Cancer Journal for Clinicians. 2011. V.61. №4. P. 250–281.
  13. Shramova E.I., Chumakov S.P., Shipunova V.O., et al. // Light Sci. Appl. 2022. V. 11. № 1. P. 38.
  14. Mishchenko T., Balalaeva I., Gorokhova A., et al. // Cell Death & Disease. 2022. V. 13. № 5. P. 455.
  15. Weldon J.E., Pastan I. // The FEBS Journal. 2011. V. 278. № 23. P. 4683–4700.
  16. Shilyagina N.Y., Plekhanov V.I., Shkunov I.V. et al. // Sovremennye Tehnologii v Medicine. 2014. V. 8. P. 15–24.
  17. Guryev E.L., Volodina N.O., Shilyagina N.Y., et al. // Proceedings of the National Academy of Sciences. 2018. V. 115. № 39. P. 9690–9695.
  18. Chu P.L., Shihabuddeen W.A., Low K.P., et al. // Photodiagnosis and Photodynamic Therapy. 2019. V. 27. P. 367–374.
  19. Bhuvaneswari R., Ng Q.F., Thong P.S., Soo K.C. // Oncotarget. 2015. V. 6. № 15. P. 13487–13505.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (58KB)
3.

Жүктеу (47KB)
4.

Жүктеу (543KB)

© И.В. Балалаева, Л.В. Крылова, М.А. Карпова, А.А. Шульга, Е.В. Коновалова, Е.Л. Гурьев, С.М. Деев, 2023