间歇性缺氧-高氧治疗对老年人群生理及治疗预防效应的现代认识

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

间歇性缺氧-高氧治疗(IHHT, intermittent hypoxia-hyperoxia therapy)被提出作为一种潜在有效的方法,能够影响衰老过程,提高老年人的生活质量,并降低该年龄群体的发病率。即使是短暂的间歇性缺氧暴露,也足以刺激活性氧的积累,提高缺氧诱导因子1 (hypoxia-inducible factor 1, HIF-1)的调控 α 亚基水平,并由此激活一系列生理反应,从而增强机体对缺氧和氧化应激的耐受性。另一个因间歇性缺氧诱导的重要生理现象是长期通气增强(LTF, long-term facilitation),其机制涉及运动神经元活动的降低及肺通气的调节,主要表现为潮气量的增加。此外,IHHT还能增强5-羟色胺系统的活性,促进脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的合成,而BDNF在高级神经活动中起着关键作用,其缺乏与多种精神疾病、神经退行性疾病以及脑部衰老密切相关。研究发现,IHHT对心力衰竭的临床标志、脂质及碳水化合物代谢紊乱、炎症过程及肝脏酶功能均具有积极作用。因此,IHHT的主要理论依据是增强机体适应能力,提高机体对缺氧这一在多种疾病进程中起关键作用的重要应激因子的耐受性。

全文:

受限制的访问

作者简介

Alina A. Reutova

Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology

Email: reutovaaa@mrik-fmba.ru
ORCID iD: 0000-0001-5558-6545
SPIN 代码: 3939-8893
俄罗斯联邦, Moscow

Nina S. Prilipko

Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology

编辑信件的主要联系方式.
Email: n_prilipko@mail.ru
ORCID iD: 0000-0002-1034-2640
SPIN 代码: 4540-9590

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Moscow

Nazim G. Badalov

Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology; The First Sechenov Moscow State Medical University

Email: prof.badalov@gmail.com
ORCID iD: 0000-0002-1407-3038
SPIN 代码: 2264-4351

MD, Dr. Sci. (Medicine), Рrofessor

俄罗斯联邦, Moscow; Moscow

参考

  1. Dziechciaż M, Filip R. Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging. Ann Agric Environ Med. 2014;21(4):835–838. doi: 10.5604/12321966.1129943
  2. Oeppen J, Vaupel JW. Demography. Broken limits to life expectancy. Science. 2002;296(5570):1029–31. doi: 10.1126/science.1069675
  3. Kyriazis M. Ageing Throughout History: The Evolution of Human Lifespan. J Mol Evol. 2020;88(1):57–65. doi: 10.1007/s00239-019-09896-2
  4. Rudnicka E, Napierała P, Podfigurna A, et al. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020;139:6–11. doi: 10.1016/j.maturitas.2020.05.018
  5. Beard JR, Officer A, de Carvalho IA, et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet. 2016;387(10033):2145–2154. doi: 10.1016/S0140-6736(15)00516-4
  6. Goldman DP, Cutler D, Rowe JW, et al. Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff. 2013;32(10):1698–705. doi: 10.1377/hlthaff.2013.0052
  7. Bayer U, Glazachev OS, Likar R, et al. Adaptation to intermittent hypoxia-hyperoxia improves cognitive performance and exercise tolerance in elderly. Adv Gerontol. 2017;30(2):255–261. EDN: YQGBYD
  8. Behrendt T, Bielitzki R, Behrens M, et al. Effects of intermittent hypoxia-hyperoxia on performance- and health-related outcomes in humans: a systematic review. Sports Med Open. 2022;8(1):70. doi: 10.1186/s40798-022-00450-x
  9. Glazachev OS. Optimization of the use of interval hypoxic training in clinical practice. Medical Technology. 2013;3(279):21–24. DN: QBMKPF
  10. Uzun AB, Iliescu MG, Stanciu LE, et al. Effectiveness of intermittent hypoxia-hyperoxia therapy in different pathologies with possible metabolic implications. Metabolites. 2023;13(2):181. doi: 10.3390/metabo13020181
  11. Chen PW, Hsu CC, Lai LF, et al. Effects of hypoxia-hyperoxia preconditioning on indicators of muscle damage after acute resistance exercise in male athletes. Front Physiol. 2022;13:824210. doi: 10.3389/fphys.2022.824210
  12. Rybnikova E, Lukyanova L. Molecular mechanisms of adaptation to hypoxia. Int J Mol Sci. 2023;24(5):4563. doi: 10.3390/ijms24054563
  13. Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004;164(6):1875–82. doi: 10.1016/S0002-9440(10)63747-9
  14. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–80. doi: 10.1124/mol.106.027029
  15. Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36(1):1–12. doi: 10.1038/emm.2004.1
  16. Corrado C, Fontana S. Hypoxia and HIF signaling: one axis with divergent effects. Int J Mol Sci. 2020;21(16):5611. doi: 10.3390/ijms21165611
  17. Semenza G. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002;64(5–6):993–8. doi: 10.1016/s0006-2952(02)01168-1
  18. Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996;271(4 Pt 1):1172–80. doi: 10.1152/ajpcell.1996.271.4.C1172
  19. Burtscher J, Mallet RT, Pialoux V, et al. Adaptive responses to hypoxia and/or hyperoxia in humans. Antioxid Redox Signal. 2022;37(13–15):887–912. doi: 10.1089/ars.2021.0280
  20. Sazontova TG, Glazachev OS, Bolotova AV, et al. Adaptation to hypoxia and hyperoxia improves physical endurance: the role of reactive oxygen species and redox-signaling. Russian Journal Of Physiology. 2012;98(6):793–807. EDN: NNAOGA
  21. Sazontova TG, Arkhipenko YV. Intermittent hypoxia in resistance of cardiac membrane structures: role of reactive oxygen species and redox signaling. In: Xi L, Serebrovskaya TV, editors. Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications. NY: Nova Science Publishers; 2009. P. 113–150.
  22. Dempsey JA, Morgan BJ. Humans in hypoxia: a conspiracy of maladaptation?! Physiology. 2015;30(4):304–16. doi: 10.1152/physiol.00007.2015
  23. Cai Z, Manalo DJ, Wei G, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation. 2003;108(1):79–85. doi: 10.1161/01.CIR.0000078635.89229.8A
  24. Hassan A, Arnold BM, Caine S, et al. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression. PLoS One. 2018;13(5):e0197486. doi: 10.1371/journal.pone.0197486
  25. Arkhipenko YuV, Sazontova TG, Zhukova AG. Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain. Bulletin of Experimental Biology and Medicine. 2005;140(9):257–260. EDN: HSYAGT
  26. Pamenter ME, Powell FL. Signalling mechanisms of long term facilitation of breathing with intermittent hypoxia. F1000Prime Rep. 2013;5:23. doi: 10.12703/P5-23.
  27. Pamenter ME, Powell FL. Time domains of the hypoxic ventilatory response and their molecular basis. Compr Physiol. 2016;6(3):1345–85. doi: 10.1002/cphy.c150026
  28. Brodin E, Linderoth B, Goiny M, et al. In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Res. 1990;535(2):227–36. doi: 10.1016/0006-8993(90)91605-g
  29. Morris KF, Gozal D. Persistent respiratory changes following intermittent hypoxic stimulation in cats and human beings. Respir Physiol Neurobiol. 2004;140(1):1–8. doi: 10.1016/j.resp.2003.12.002
  30. Popova NK, Ilchibaeva TV, Naumenko VS. Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochemistry. 2017;82(3):308–317. doi: 10.1134/S0006297917030099
  31. Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci. 2004;7(1):48–55. doi: 10.1038/nn1166
  32. Brigadski T, Leßmann V. BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum. 2014;5:1–11. doi: 10.1007/s13295-014-0053-9
  33. Ryou MG, Chen X, Cai M, et al. Intermittent hypoxia training prevents deficient learning-memory behavior in mice modeling alzheimer's disease: a pilot study. Front Aging Neurosci. 2021;13:674688. doi: 10.3389/fnagi.2021.674688
  34. Meng SX, Wang B, Li WT. Intermittent hypoxia improves cognition and reduces anxiety-related behavior in APP/PS1 mice. Brain Behav. 2020;10(2):e01513. doi: 10.1002/brb3.1513
  35. Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med. 2018;126:296–312. doi: 10.1016/j.freeradbiomed.2018.08.019
  36. Glazachev OS, Dudnik EN, Zapara MA, et al. Adaptation to dosed hypoxia-hyperoxia as a factor in the improvement of quality of life for elderly patients with cardiac pathology. Advances in gerontology. 2019;32(1–2):145–151. EDN: ZHEJPV
  37. Bestavashvili A, Glazachev O, Bestavashvili A, et al. Intermittent hypoxic-hyperoxic exposures effects in patients with metabolic syndrome: correction of cardiovascular and metabolic profile . Biomedicines. 2022;10(3):566. doi: 10.3390/biomedicines10030566
  38. Syrkin AL, Glazachev OS, Kopylov FYu, et al. Adaptation to interval hypoxia-hyperoxia in the rehabilitation of patients with coronary heart disease: exercise tolerance and quality of life. Cardiology. 2017;57(5):10–16. doi: 10.18565/cardio.2017.5.10-16 EDN: YPQJWX
  39. Afina AB, Oleg SG, Alexander AB, et al. The effects of intermittent hypoxic-hyperoxic exposures on lipid profile and inflammation in patients with metabolic syndrome. Front Cardiovasc Med. 2021;8:700826. doi: 10.3389/fcvm.2021.700826
  40. Wojan F, Stray-Gundersen S, Massoudian SD, Lalande S. Brief exposure to intermittent hypoxia increases erythropoietin levels in older adults. J Appl Physiol. 2023;135(1):88–93. doi: 10.1152/japplphysiol.00172.2023
  41. Van Meijel RLJ, Venema K, Canfora EE, et al. Mild intermittent hypoxia exposure alters gut microbiota composition in men with overweight and obesity. Benef Microbes. 2022;13(4):355–364. doi: 10.3920/BM2021.0159
  42. Serebrovska ZO, Xi L, Tumanovska LV, et al. Response of circulating inflammatory markers to intermittent hypoxia-hyperoxia training in healthy elderly people and patients with mild cognitive impairment. Life. 2022;12(3):432. doi: 10.3390/life12030432
  43. Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener. 2022;11(1):4. doi: 10.1186/s40035-022-00279-0
  44. Bayer U, Likar R, Pinter G, et al. Intermittent hypoxic-hyperoxic training on cognitive performance in geriatric patients. Alzheimers Dement. 2017;3(1):114–122. doi: 10.1016/j.trci.2017.01.002
  45. Behrendt T, Bielitzki R, Behrens M, et al. Effects of intermittent hypoxia-hyperoxia exposure prior to aerobic cycling exercise on physical and cognitive performance in geriatric patients — a randomized controlled trial. Front Physiol. 2022;13:899096. doi: 10.3389/fphys.2022.899096
  46. Behrendt T, Quisilima JI, Bielitzki R, et al. Brain-Derived neurotrophic factor and inflammatory biomarkers are unaffected by acute and chronic intermittent hypoxic-hyperoxic exposure in geriatric patients: a randomized controlled trial. Ann Med. 2024; 56(1):2304650. doi: 10.1080/07853890.2024.2304650
  47. Behrendt T, Altorjay AC, Bielitzki R, et al. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients-a randomized controlled trial. Front Physiol. 2022;13:1043536. doi: 10.3389/fphys.2022.1043536
  48. Glazachev O, Kopylov P, Susta D, et al. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study. Clin Cardiol. 2017;40(6):370–376. doi: 10.1002/clc.2267084
  49. Myers J, McAuley P, Lavie CJ, et al. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306–14. doi: 10.1016/j.pcad.2014.09.011
  50. Dudnik E, Zagaynaya E, Glazachev OS, Susta D. Intermittent hypoxia-hyperoxia conditioning improves cardiorespiratory fitness in older comorbid cardiac outpatients without hematological changes: a randomized controlled trial. High Alt Med Biol. 2018;19(4):339–343. doi: 10.1089/ham.2018.0014
  51. Glazachev OS, Dudnik EN, Pozdnyakov YuM. Adaptation to interval hypoxia-hyperoxia in the rehabilitation of patients with coronary heart disease. Man and his health. 2014;1:58–64. EDN: SNMMHR
  52. Serebrovska TV, Grib ON, Portnichenko VI, et al. Intermittent hypoxia/hyperoxia versus intermittent hypoxia/normoxia: comparative study in prediabetes. High Alt Med Biol. 2019;20(4):383–391. doi: 10.1089/ham.2019.0053
  53. Imerb N, Thonusin C, Chattipakorn N, Chattipakorn SC. Aging, obese-insulin resistance, and bone remodeling. Mech Ageing Dev. 2020;191:111335. doi: 10.1016/j.mad.2020.111335
  54. Glazachev OS, Zvenigorodskaya LA, Dudnik EN, et al. Interval hypo-hyperoxic training in the treatment of metabolic syndrome. Experimental and Clinical Gastroenterology. 2010;7:51–56. (In Russ.) EDN: MVAJUH
  55. Hamrick MW, Stranahan AM. Metabolic regulation of aging and age-related disease. Ageing Res Rev. 2020;64:101175. doi: 10.1016/j.arr.2020.101175
  56. López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001
  57. Zhang Q, Zhao W, Li S, et al. Intermittent hypoxia conditioning: a potential multi-organ protective therapeutic strategy. Int J Med Sci. 2023;20(12):1551–1561. doi: 10.7150/ijms.86622

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.