Laser and phototherapy of rosacea

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Rosacea is a non-infectious dermatological disease of middle age, requiring long-term and often lifelong treatment. The onset of the disease begins with minor clinical manifestations such as centrofacial transient erythema or conjunctivitis, which patients often do not consider as a need to consult a doctor.

Early therapy prevents the chronization of the process and the development of severe forms, which include papulo-pustular rosacea, ophthalmosacea and phymes.

One of the methods of rosacea treatment is physiotherapy, which includes laser light, cryotherapy, darsonvalization, electrophoresis, electrocoagulation, pulse therapy, inductothermy, phototherapy of vascular pathology, and others.

This review presents the main mechanisms of laser light action on human skin and systematizes recent data on its use in various forms of rosacea.

Despite the moderate success of laser therapy, further research will help to choose more effective treatment protocols for rosacea. The appearance of the first signs of vasodilation in the facial area, especially in people with a family history of rosacea, frequent eye diseases or the presence of fim, requires contacting a dermatologist.

Full Text

Restricted Access

About the authors

Yuliya I. Matushevskaya

Lyubertsy Skin and Venereological Dispensary

Author for correspondence.
Email: yuliya-matushevskaya@yandex.ru
ORCID iD: 0000-0001-5995-6689
SPIN-code: 3238-9093

MD, Cand. Sci. (Med.)

Russian Federation, Lyubertsy

References

  1. Yazici AC, Tamer L, Ikizoglu G, et al. GSTM1 and GSTT1 null geno types as possible heritable factors of rosacea. Photodermatol. Photoimmunol Photomed. 2006;22:208–210. doi: 10.1111/j.1600-0781.2006.00220.x
  2. Srivastava DS, Jain VK, Verma P, Yadav JP. Polymorphism of glutathione S-transferase M1 and T1 genes and susceptibility to psoriasis disease: A study from North India. Indian J Dermatol Venereol Leprol. 2018;84(1):39–44. doi: 10.4103/ijdvl.IJDVL_1128_16
  3. Guo H, Huang Y, Wu J, et al. Correlation analysis of the HLA-DPB1*05:01 and BTNL2 genes within the histocompatibility complex region with a clinical phenotype of psoriasis vulgaris in the Chinese Han population. J Gene Med. 2017;19(9-10). doi: 10.1002/jgm.2961
  4. Chang AL, Raber I, Xu J, et al. Assessment of the genetic basis of rosacea by genome-wide association study. J Invest Dermatol. 2015;135(6):1548–1555. doi: 10.1038/jid.2015.53
  5. Rhodes DA, Reith W, Trowsdale J. Regulation of immunity by butyrophilins. Annu Rev Immunol. 2016;34:151–172. doi: 10.1146/annurev-immunol-041015-055435
  6. Chaperon M, Pacheco Y, Maucort-Boulch D, et al. BTNL2 gene polymorphism and sarcoid uveitis. Br J Ophthalmol. 2019. pii: bjophthalmol-2018-312949. doi: 10.1136/bjophthalmol-2018-312949
  7. Tolentino YF, Elia PP, Fogaça HS, et al. Common NOD2/CARD15 and TLR4 polymorphisms are associated with Crohn's disease phenotypes in southeastern Brazilians. Dig Dis Sci. 2016;61(9):2636–2647. doi: 10.1007/s10620-016-4172-8
  8. Marrani E, Cimaz R, Lucherini OM, et al. The common NOD2/CARD15 variant P268S in patients with non-infectious uveitis: A cohort study. Pediatr Rheumatol Online J. 2015;13(1):38. doi: 10.1186/s12969-015-0037-5
  9. Angeletti S, Galluzzo S, Santini D, et al. NOD2/CARD15 polymorphisms impair innate immunity and increase susceptibility to gastric cancer in an Italian population. Hum Immunol. 2009;70(9):729–732. doi: 10.1016/j.humimm.2009.04.026
  10. Salzer S, Kresse S, Hirai Y, et al. Cathelicidin peptide LL-37 increases UVB-triggered inflammasome activation: Possible implications for rosacea. J Dermatol Sci. 2014;76(3):173–179. doi: 10.1016/j.jdermsci.2014.09.002
  11. Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc. 2011;15(1):12–15. doi: 10.1038/jidsymp.2011.4
  12. Gökçınar NB, Karabulut AA, Onaran Z, et al. Elevated tear human neutrophil peptides 1-3, human beta defensin-2 levels and conjunctival cathelicidin LL-37 gene expression in ocular rosacea. Ocul Immunol Inflamm. 2019;27(7):1174–1183. doi: 10.1080/09273948.2018.1504971
  13. Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131(3):688–697. doi: 10.1038/jid.2010.351
  14. Meyer-Hoffert U, Schröder JM. Epidermal proteases in the pathogenesis of rosacea. J Investig Dermatol Symp Proc. 2011;15(1):16–23. doi: 10.1038/jidsymp.2011.2
  15. Muto Y, Wang Z, Vanderberghe M, et al. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Invest Dermatol. 2014;134(11):2728–2736. doi: 10.1038/jid.2014.222
  16. Zaidi AK, Spaunhurst K, Sprockett D, et al. Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol. 2018;27(3):295–298. doi: 10.1111/exd.13491
  17. Clanner-Engelshofen BM, Bernhard D, Dargatz S, et al. S2k guideline: Rosacea. J Dtsch Dermatol Ges. 2022;20(8):1147–1165. doi: 10.1111/ddg.14849
  18. Searle T, Ali FR, Carolides S, Al-Niaimi F. Rosacea and diet: What is new in 2021? J Clin Aesthet Dermatol. 2021;14(12):49–54.
  19. Silverman HA, Chen A, Kravatz NL, et al. Involvement of neural transient receptor potential channels in peripheral inflammation. Front Immunol. 2020;11:590261. doi: 10.3389/fimmu.2020.590261
  20. Ziolkowski N, Kitto SC, Jeong D, et al. Psychosocial and quality of life impact of scars in the surgical, traumatic and burn populations: A scoping review protocol. BMJ Open. 2019;9(6):e021289. doi: 10.1136/bmjopen-2017-021289
  21. Anderson RR, Parrish JA. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–527. doi: 10.1126/science.6836297
  22. Alam M, Voravutinon N, Warycha M, et al. Comparative effectiveness of nonpurpuragenic 595-nm pulsed dye laser and microsecond 1064-nm neodymium:yttrium-aluminum-garnet laser for treatment of diffuse facial erythema: A double-blind randomized controlled trial. J Am Acad Dermatol. 2013;69(3):438–443. doi: 10.1016/j.jaad.2013.04.015
  23. Campos MA, Sousa AC, Varela P, et al. Comparative effectiveness of purpuragenic 595 nm pulsed dye laser versus sequential emission of 595 nm pulsed dye laser and 1,064 nm Nd:YAG laser: A double-blind randomized controlled study. Acta Dermatovenerol Alp Pannonica Adriat. 2019;28(1):1–5.
  24. Kwon WJ, Park BW, Cho EB, et al. Comparison of efficacy between long-pulsed Nd:YAG laser and pulsed dye laser to treat rosacea-associated nasal telangiectasia. J Cosmet Laser Ther. 2018;20(5):260–264. doi: 10.1080/14764172.2017.1418510
  25. Salem SA, Abdel Fattah NS, Tantawy SM, et al. Neodymium-yttrium aluminum garnet laser versus pulsed dye laser in erythemato-telangiectatic rosacea: Comparison of clinical efficacy and effect on cutaneous substance (P) expression. J Cosmet Dermatol. 2013;12(3):187–194. doi: 10.1111/jocd.12048
  26. Handler MZ, Bloom BS, Goldberg DJ. IPL vs PDL in treatment of facial erythema: A split-face study. J Cosmet Dermatol. 2017;16(4):450–453. doi: 10.1111/jocd.12365
  27. Kim BY, Moon HR, Ryu HJ. Comparative efficacy of short-pulsed intense pulsed light and pulsed dye laser to treat rosacea. J Cosmet Laser Ther. 2019;21(5):291–296. doi: 10.1080/14764172.2018.1528371
  28. Neuhaus IM, Zane LT, Tope WD. Comparative efficacy of nonpurpuragenic pulsed dye laser and intense pulsed light for erythematotelangiectatic rosacea. Dermatol Surg. 2009;35(6):920–928. doi: 10.1111/j.1524-4725.2009.01156.x
  29. Nymann P, Hedelund L, Haedersdal M. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: A randomized controlled trial. J Eur Acad Dermatol Venereol. 2010;24(2):143–146. doi: 10.1111/j.1468-3083.2009.03357.x
  30. Tanghetti EA. Split-face randomized treatment of facial telangiectasia comparing pulsed dye laser and an intense pulsed light handpiece. Lasers Surg Med. 2012;44(2):97–102. doi: 10.1002/lsm.21151
  31. West TB, Alster TS. Comparison of the long-pulse dye (590–595 nm) and KTP (532 nm) lasers in the treatment of facial and leg telangiectasias. Dermatol Surg. 1998;24(2):221–226. doi: 10.1111/j.1524-4725.1998.tb04140.x
  32. Kim SJ, Lee Y, Seo YJ, et al. Comparative efficacy of radiofrequency and pulsed dye laser in the treatment of rosacea. Dermatol Surg. 2017;43(2):204–209. doi: 10.1097/DSS.0000000000000968
  33. Kruglova LS, Kotenko KV, Korchazhkina NB, Turbovskaya SN. Physiotherapy in dermatology. Moscow: GEOTAR-Media; 2016. 304 p. (In Russ).
  34. Paasch U, Zidane M, Baron JM, et al. S2k guideline: Laser therapy of the skin. J Dtsch Dermatol Ges. 2022;20(9):1248–1267. doi: 10.1111/ddg.14879
  35. Husein-ElAhmed H, Steinhoff M. Light-based therapies in the management of rosacea: A systematic review with meta-ana lysis. Int J Dermatol. 2022;61(2):216–225. doi: 10.1111/ijd.15680
  36. Luo Y, Luan XL, Zhang JH, et al. Improved telangiectasia and reduced recurrence rate of rosacea after treatment with 540 nm-wavelength intense pulsed light: A prospective randomized controlled trial with a 2-year follow-up. Exp Ther Med. 2020;19(6):3543–3550. doi: 10.3892/etm.2020.8617
  37. Liu J, Liu J, Ren Y, et al. Comparative efficacy of intense pulsed light for different erythema associated with rosacea. J Cosmet Laser Ther. 2014;16(6):324–327. doi: 10.3109/14764172.2014.957218
  38. Sharshunova AA, Kruglova LS, Kotenko KV, Sofinskaya GV. Etiopathogenesis and possibilities of laser therapy of erythematous-telangiectatic subtype of rosacea. Russian journal of the physial therapy, balneotherapy and rehabilitation. 2017;16(6):284–290. doi: 10.18821/1681-3456-2017-16-6-284-290
  39. Toyos R, Desai NR, Toyos M, Dell SJ. Intense pulsed light improves signs and symptoms of dry eye disease due to meibomian gland dysfunction: A randomized controlled study. PLoS One. 2022;17(6):e0270268. doi: 10.1371/journal.pone.0270268
  40. Amaral MT, Haddad A, Nahas FX, et al. Impact of fractional ablative carbon dioxide laser on the treatment of rhinophyma. Aesthet Surg J. 2019;39(4):NP68–NP75. doi: 10.1093/asj/sjy234
  41. Kassirer SS, Gotkin RH, Sarnoff DS. Treatment of rhinophyma with fractional CO2 laser resurfacing in a woman of color: Case report and review of the literature. J Drugs Dermatol. 2021;20(7):772–775. doi: 10.36849/JDD.C702
  42. Bassi A, Campolmi P, Dindelli M, et al. Laser surgery in rhinophyma. G Ital Dermatol Venereol. 2016;151(1):9–16.
  43. Badawi A, Osman M, Kassab A. Novel management of rhinophyma by patterned ablative 2940 nm Erbium:YAG laser. Clin Cosmet Investig Dermatol. 2020;13:949–955. doi: 10.2147/CCID.S286847
  44. Li A, Fang R, Mao X, Sun Q. Photodynamic therapy in the treatment of rosacea: A systematic review. Photodiagnosis Photodyn Ther. 2022;38:102875. doi: 10.1016/j.pdpdt.2022.102875
  45. Friedmann DP, Goldman MP, Fabi SG, Guiha I. Multiple sequential light and laser sources to activate aminolevulinic acid for rosacea. J Cosmet Dermatol. 2016;15(4):407–412. doi: 10.1111/jocd.12231

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characteristics of laser light used both in cosmetology and in therapy.

Download (69KB)
3. Fig. 2. The depth of exposure of lasers with different wavelengths to the skin.

Download (293KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies