Molecular mechanisms of action of heat shock protein 27 under conditions of physical exertion and its role in the prevention of cardiovascular diseases
- Authors: Rachkov A.A., Oleynikova A.S., Borolisova A.I., Mirzosharipov I.I., Makhyanov R.R., Kadochnikova S.A., Khairullina L.A., Abutalimova K.B., Zimin R.O., Mrdalieva N.F., Pokidov K.B., Nelyubina D.A., Boiko D.O., Kharchenko S.A.
- Section: Review
- Published: 30.03.2025
- URL: https://rjpbr.com/1681-3456/article/view/657473
- DOI: https://doi.org/10.17816/rjpbr657473
- ID: 657473
Cite item
Abstract
Cardiovascular diseases (CVD) pose a serious threat to public health in the Russian Federation, being the leading cause of death. The economic impact of CVD in 2016 amounted to a staggering 2.7 trillion rubles, which corresponds to 3.2% of the country's GDP. Risk factors for CVD, such as sedentary lifestyle, smoking, alcohol consumption, unhealthy eating habits, and obesity, directly contribute to deteriorating heart and vascular health. The circulating heat shock protein (HSP)27 plays a key role in inflammatory, antioxidant, anti-apoptotic, and anti-atherogenic processes. It serves as a signaling molecule in the blood, helping the body cope with various types of stress. Studies show that the level of HSP27 decreases with age and during menopause, which may contribute to the development of atherosclerosis. Atherosclerosis, in turn, is a major factor in many cardiovascular diseases. Physical exercise has beneficial effects on the body, promoting an increase in the level of HSP27 in the blood plasma. This increase can have immunomodulatory effects on various cells of the immune system, including monocytes. Through this mechanism, physical activity helps the body fight inflammation and reduce the risk of cardiovascular diseases. Therefore, understanding the role of HSP27 in the context of physical activity opens up new prospects for the prevention and treatment of CVD. Further research in this area could lead to the development of innovative therapeutic strategies aimed at increasing the level of HSP27 and reducing the risk of atherosclerosis and other cardiovascular diseases.
Full Text

About the authors
Aleksandr A. Rachkov
Author for correspondence.
Email: motoredj2@rambler.ru
ORCID iD: 0009-0002-8654-0229
Russian Federation
Alina S. Oleynikova
Email: a_vinyukova@list.ru
ORCID iD: 0009-0000-4740-0755
Alena I. Borolisova
Email: alena-dits@mail.ru
ORCID iD: 0009-0003-2145-3041
Ikbol I. Mirzosharipov
Email: ikbol.ikromi@bk.ru
ORCID iD: 0009-0000-7655-661X
Ruslan R. Makhyanov
Email: ruslanmakhyanov0608@gmail.com
ORCID iD: 0009-0001-0437-1744
Sofia A. Kadochnikova
Email: skadochnikovaa@mail.ru
ORCID iD: 0009-0002-1901-830X
Liliya A. Khairullina
Email: lily_2205khai@mail.ru
ORCID iD: 0009-0009-5342-269X
Khabibat B. Abutalimova
Email: habibat408@gmail.com
ORCID iD: 0009-0001-3702-3965
Ruslan O. Zimin
Email: Zimin.ruslan99@mail.ru
ORCID iD: 0009-0003-0792-2307
Nazira F. Mrdalieva
Email: merdalieva6@gmail.com
ORCID iD: 0009-0006-5411-0813
Kirill B. Pokidov
Email: pokidov.kiril@yandex.ru
ORCID iD: 0009-0005-0438-7569
Diana A. Nelyubina
Email: di709@yandex.ru
ORCID iD: 0000-0002-6279-9300
Darya O. Boiko
Email: cuttheworld57@gmail.com
ORCID iD: 0009-0006-9493-1763
Sofya A. Kharchenko
Email: Sofiaivanova79@mail.ru
ORCID iD: 0000-0001-7635-7418
References
- Kontsevaya A.V., Mukaneeva D.K., Ignatieva V.I., et al. Economics of cardiovascular prevention in the Russian Federation. Russian Journal of Cardiology. 2023;28(9):5521. (In Russ.) doi: 10.15829/1560-4071-2023-5521.
- Benjamin EJ, Muntner P, Alonso A, et al. Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
- Benjamin EJ, Muntner P, Alonso A, et al. Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528. doi: 10.1161/CIR.0000000000000659.
- Maksimovich N.Ye., Bon E.I. Heat Shock Proteins. Properties. Role in Adaptation. Methodological Approaches to Definition. Journal Biomed. 2020;(2):60-67. (In Russ.) doi: 10.33647/2074-5982-16-2-60-67
- Zou Y, Shi H, Liu N, et al. Mechanistic insights into heat shock protein 27, a potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med. 2023;10:1195464. doi: 10.3389/fcvm.2023.1195464.
- Batulan Z, Pulakazhi Venu VK, Li Y, et al. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation. Front Immunol. 2016;7:285. doi: 10.3389/fimmu.2016.00285.
- Kardys I, Rifai N, Meilhac O, et al. Plasma concentration of heat shock protein 27 and risk of cardiovascular disease: a prospective, nested case-control study. Clin Chem. 2008;54(1):139-46. doi: 10.1373/clinchem.2007.094961.
- Timofeev Yu.S., Afaunova A.A., Metelskaya V.A., et al. Heat shock proteins as potential biomarkers of heart failure. Cardiovascular Therapy and Prevention. 2024;23(4):3938. (In Russ.) doi: 10.15829/1728-8800-2024-3938
- Maarouf N, Chen YX, Shi C, et al. Unlike estrogens that increase PCSK9 levels post-menopause HSP27 vaccination lowers cholesterol levels and atherogenesis due to divergent effects on PCSK9 and LDLR. Pharmacol Res. 2020;161:105222. doi: 10.1016/j.phrs.2020.105222.
- Rayner K, Chen YX, Siebert T, O'Brien ER. Heat shock protein 27: clue to understanding estrogen-mediated atheroprotection? Trends Cardiovasc Med. 2010;20(2):54-8. doi: 10.1016/j.tcm.2010.03.008.
- Khazova E.V., Bulashova O.V. Residual risk in patients with atherosclerotic cardiovascular disease. Cardiovascular Therapy and Prevention. 2023;22(1):3382. (In Russ.) doi: 10.15829/1728-8800-2023-3382
- McCarthy M, Raval AP. The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation. 2020;17(1):317. doi: 10.1186/s12974-020-01998-9.
- Moreau KL, Hildreth KL, Klawitter J, et al. Decline in endothelial function across the menopause transition in healthy women is related to decreased estradiol and increased oxidative stress. Geroscience. 2020;42(6):1699-1714. doi: 10.1007/s11357-020-00236-7.
- El Khoudary SR. Gaps, limitations and new insights on endogenous estrogen and follicle stimulating hormone as related to risk of cardiovascular disease in women traversing the menopause: A narrative review. Maturitas. 2017;104:44-53. doi: 10.1016/j.maturitas.2017.08.003.
- Saner Kh. Prevention of cardiovascular diseases through physical activity and exercises: exercise stress as a medicine. Russian Journal of Cardiology and Cardiovascular Surgery. 2013;6(6):17‑23. (In Russ.)
- Gliemann L, Hellsten Y. The exercise timing hypothesis: can exercise training compensate for the reduction in blood vessel function after menopause if timed right? J Physiol. 2019;597(19):4915-4925. doi: 10.1113/JP277056.
- Lundberg Slingsby MH, Nyberg M, Egelund J, et al. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women. J Thromb Haemost. 2017;15(12):2419-2431. doi: 10.1111/jth.13866.
- Mandrup CM, Egelund J, Nyberg M, et al. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism. Menopause. 2018;25(2):165-175. doi: 10.1097/GME.0000000000000981.
- Nyberg M, Egelund J, Mandrup CM, et al.. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase. J Physiol. 2017;595(9):2969-2983. doi: 10.1113/JP273871.
- Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334-59. doi: 10.1249/MSS.0b013e318213fefb.
- Chow LS, Gerszten RE, Taylor JM, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022;18(5):273-289. doi: 10.1038/s41574-022-00641-2.
- Fiuza-Luces C, Santos-Lozano A, Joyner M, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15(12):731-743. doi: 10.1038/s41569-018-0065-1.
- Magliulo L, Bondi D, Pini N, Marramiero L, Di Filippo ES. The wonder exerkines-novel insights: a critical state-of-the-art review. Mol Cell Biochem. 2022;477(1):105-113. doi: 10.1007/s11010-021-04264-5.
- Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther. 2024;9(1):138. doi: 10.1038/s41392-024-01841-0.
- Whitham M, Parker BL, Friedrichsen M, et al. Extracellular Vesicles Provide a Means for Tissue Crosstalk during Exercise. Cell Metab. 2018;27(1):237-251.e4. doi: 10.1016/j.cmet.2017.12.001.
- Henstridge DC, Whitham M, Febbraio MA. Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 2014;3(8):781-93. doi: 10.1016/j.molmet.2014.08.003.
- Jammes Y, Steinberg JG, Olivier M, et al. The mechanisms of the widespread production of phosphorylated HSP25 after fatiguing muscle stimulation. J Exp Biol. 2013;216(Pt 19):3620-6. doi: 10.1242/jeb.088898.
- Murphy RM, Watt MJ, Febbraio MA. Metabolic communication during exercise. Nat Metab. 2020;2(9):805-816. doi: 10.1038/s42255-020-0258-x.
- Yamada P, Amorim F, Moseley P, Schneider S. Heat shock protein 72 response to exercise in humans. Sports Med. 2008;38(9):715-33. doi: 10.2165/00007256-200838090-00002.
- Пушкина Я.А., Сычев И.В., Гончарова Л.Н., и др. Патогенетические механизмы развития атеросклероза у спортсменов. Атеросклероз. 2020;16(4):85-92. doi: 10.15372/ATER20200411
- Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol. 2022;22(4):251-265. doi: 10.1038/s41577-021-00584-1.
- Chinetti-Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12(1):10-7. doi: 10.1038/nrcardio.2014.173.
- Matzinger P. An innate sense of danger. Semin Immunol. 1998;10(5):399-415. doi: 10.1006/smim.1998.0143.
- Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair. 2012;5(1):7. doi: 10.1186/1755-1536-5-7.
- Calderwood SK, Repasky EA, Neckers L, Hightower LE. The IXth CSSI international symposium on heat shock proteins in biology and medicine: stress responses in health and disease : Alexandria Old Town, Alexandria, Virginia, November 10-13, 2018. Cell Stress Chaperones. 2019;24(1):1-6. doi: 10.1007/s12192-018-00966-w.
- Dubrez L, Causse S, Borges Bonan N, et al. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020;39(3):516-529. doi: 10.1038/s41388-019-1016-y.
- Broere F, van der Zee R, van Eden W. Heat shock proteins are no DAMPs, rather 'DAMPERs'. Nat Rev Immunol. 2011;11(8):565; author reply 565. doi: 10.1038/nri2873-c1.
- Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. Geroscience. 2021;43(5):2515-2532. doi: 10.1007/s11357-021-00394-2.
- van Eden W, Spiering R, Broere F, van der Zee R. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress Chaperones. 2012;17(3):281-92. doi: 10.1007/s12192-011-0311-5.
- Giuliano JS Jr, Lahni PM, Wong HR, Wheeler DS. Pediatric Sepsis - Part V: Extracellular Heat Shock Proteins: Alarmins for the Host Immune System. Open Inflamm J. 2011;4:49-60. doi: 10.2174/1875041901104010049
- O'Brien ER, Sandhu JK. Sex differences in COVID-19 mortality: opportunity to develop HSP27 (HSPB1) immunotherapy to treat hyper-inflammation? Cell Stress Chaperones. 2020;25(5):725-729. doi: 10.1007/s12192-020-01146-5.
- Chen YX, Shi C, Deng J, et al. HSP25 Vaccination Attenuates Atherogenesis via Upregulation of LDLR Expression, Lowering of PCSK9 Levels and Curbing of Inflammation. Arterioscler Thromb Vasc Biol. 2021;41(6):e338-e353. doi: 10.1161/ATVBAHA.121.315933.
- Cuerrier CM, Chen YX, Tremblay D, et al. Chronic over-expression of heat shock protein 27 attenuates atherogenesis and enhances plaque remodeling: a combined histological and mechanical assessment of aortic lesions. PLoS One. 2013;8(2):e55867. doi: 10.1371/journal.pone.0055867.
- Seibert TA, Hibbert B, Chen YX, et al. Serum heat shock protein 27 levels represent a potential therapeutic target for atherosclerosis: observations from a human cohort and treatment of female mice. J Am Coll Cardiol. 2013;62(16):1446-54. doi: 10.1016/j.jacc.2013.05.041.
- Ogbodo E, Michelangeli F, Williams JHH. Exogenous heat shock proteins HSPA1A and HSPB1 regulate TNF-α, IL-1β and IL-10 secretion from monocytic cells. FEBS Open Bio. 2023;13(10):1922-1940. doi: 10.1002/2211-5463.13695.
- Salari S, Seibert T, Chen YX, et al. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones. 2013;18(1):53-63. doi: 10.1007/s12192-012-0356-0
- Shi C, Deng J, Chiu M, Chen YX, O'Brien ER. Heat shock protein 27 immune complex altered signaling and transport (ICAST): Novel mechanisms of attenuating inflammation. FASEB J. 2020;34(11):14287-14301. doi: 10.1096/fj.202001389RR.
- Jin C, Phillips VL, Williams MJ, et al. Plasma heat shock protein 27 is associated with coronary artery disease, abdominal aortic aneurysm and peripheral artery disease. Springerplus. 2014;3:635. doi: 10.1186/2193-1801-3-635
- Martin-Ventura JL, Duran MC, Blanco-Colio LM, et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation. 2004;110(15):2216-9. doi: 10.1161/01.CIR.0000136814.87170.B1.
- Rea IM, McNerlan S, Pockley AG. Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol. 2001;36(2):341-52. doi: 10.1016/s0531-5565(00)00215-1.
- Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci. 2018;75(16):2897-2916. doi: 10.1007/s00018-018-2836-6.
- Trivedi R, Jurivich DA. A molecular perspective on age-dependent changes to the heat shock axis. Exp Gerontol. 2020;137:110969. doi: 10.1016/j.exger.2020.110969.
- Wang H, Alencar A, Lin M, et al. Activation of GPR30 improves exercise capacity and skeletal muscle strength in senescent female Fischer344 × Brown Norway rats. Biochem Biophys Res Commun. 2016;475(1):81-6. doi: 10.1016/j.bbrc.2016.05.040
- Batulan Z, Maarouf N, Shrivastava V, O'Brien E. Prophylactic salpingo-oophorectomy & surgical menopause for inherited risks of cancer: the need to identify biomarkers to assess the theoretical risk of premature coronary artery disease. Womens Midlife Health. 2018;4:7. doi: 10.1186/s40695-018-0037-y.
- Cumming KT, Kvamme NH, Schaad L, et al. Muscular HSP70 content is higher in elderly compared to young, but is normalized after 12 weeks of strength training. Eur J Appl Physiol. 2021;121(6):1689-1699. doi: 10.1007/s00421-021-04633-4.
- Koskinen SOA, Kyröläinen H, Flink R, et al. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise. Histochem Cell Biol. 2017;148(5):545-555. doi: 10.1007/s00418-017-1595-z.
- Nielsen JL, Aagaard P, Prokhorova TA, et al. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. J Physiol. 2017;595(14):4857-4873. doi: 10.1113/JP273907.
- Cumming KT, Paulsen G, Wernbom M, et al. Acute response and subcellular movement of HSP27, αB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol (Oxf). 2014;211(4):634-46. doi: 10.1111/apha.12305.
- Huey KA, McCall GE, Zhong H, Roy RR. Modulation of HSP25 and TNF-alpha during the early stages of functional overload of a rat slow and fast muscle. J Appl Physiol (1985). 2007;102(6):2307-14. doi: 10.1152/japplphysiol.00021.2007.
- Ishihara A, Fujino H, Nagatomo F, et al. Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight. J Physiol Sci. 2008;58(6):413-7. doi: 10.2170/physiolsci.RP000808.
- Lawler JM, Song W, Kwak HB. Differential response of heat shock proteins to hindlimb unloading and reloading in the soleus. Muscle Nerve. 2006;33(2):200-7. doi: 10.1002/mus.20454.
- Cumming KT, Ellefsen S, Rønnestad BR, et al. Acute and long-term effects of blood flow restricted training on heat shock proteins and endogenous antioxidant systems. Scand J Med Sci Sports. 2017;27(11):1190-1201. doi: 10.1111/sms.12774.
- Cumming KT, Raastad T, Sørstrøm A, et al. Vitamin C and E supplementation does not affect heat shock proteins or endogenous antioxidants in trained skeletal muscles during 12 weeks of strength training. BMC Nutr. 2017;3:70. doi: 10.1186/s40795-017-0185-8.
- Larkins NT, Murphy RM, Lamb GD. Absolute amounts and diffusibility of HSP72, HSP25, and αB-crystallin in fast- and slow-twitch skeletal muscle fibers of rat. Am J Physiol Cell Physiol. 2012;302(1):C228-39. doi: 10.1152/ajpcell.00266.2011.
- Sadri I, Nikookheslat SD, Karimi P, et al. Aerobic exercise training improves memory function through modulation of brain-derived neurotrophic factor and synaptic proteins in the hippocampus and prefrontal cortex of type 2 diabetic rats. J Diabetes Metab Disord. 2023;23(1):849-858. doi: 10.1007/s40200-023-01360-9.
- Brunelli A, Dimauro I, Sgrò P, et al. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med Sci Sports Exerc. 2012;44(10):1871-80. doi: 10.1249/MSS.0b013e31825ab69b.
- Vardar SA, Doğanlar ZB, Kaya O, et al. Different responses of apoptotic, inflammatory and heat shock protein gene expression to a single bout of high-intensity interval exercise between physically active and inactive men. Appl Physiol Nutr Metab. 2021;46(7):743-752. doi: 10.1139/apnm-2020-0783.
- Whitham M, Halson SL, Lancaster GI, et a; Leukocyte heat shock protein expression before and after intensified training. Int J Sports Med. 2004;25(7):522-7. doi: 10.1055/s-2004-820953
- Hagymasi AT, Dempsey JP, Srivastava PK. Heat-Shock Proteins. Curr Protoc. 2022;2(11):e592. doi: 10.1002/cpz1.592.
- Grotegut P, Hoerdemann PJ, Reinehr S, et al. Heat Shock Protein 27 Injection Leads to Caspase Activation in the Visual Pathway and Retinal T-Cell Response. Int J Mol Sci. 2021;22(2):513. doi: 10.3390/ijms22020513.
- Brown J, Wang H, Hajishengallis GN, Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res. 2011;90(4):417-27. doi: 10.1177/0022034510381264.
- Kessler B, Rinchai D, Kewcharoenwong C, et al. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei. Sci Rep. 2017;7:42791. doi: 10.1038/srep42791.
- Zamani F, Zare Shahneh F, Aghebati-Maleki L, Baradaran B. Induction of CD14 Expression and Differentiation to Monocytes or Mature Macrophages in Promyelocytic Cell Lines: New Approach. Adv Pharm Bull. 2013;3(2):329-32. doi: 10.5681/apb.2013.053.
- Oh ES, Na M, Rogers CJ. The Association Between Monocyte Subsets and Cardiometabolic Disorders/Cardiovascular Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2021;8:640124. doi: 10.3389/fcvm.2021.640124
- Xiang Y, Liang B, Zhang X, Zheng F. Lower HDL-C levels are associated with higher expressions of CD16 on monocyte subsets in coronary atherosclerosis. Int J Med Sci. 2020;17(14):2171-2179. doi: 10.7150/ijms.47998.
- Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122(12):1722-1740. doi: 10.1161/CIRCRESAHA.118.311362.
- Pfeiler S, Winkels H, Kelm M, Gerdes N. IL-1 family cytokines in cardiovascular disease. Cytokine. 2019;122:154215. doi: 10.1016/j.cyto.2017.11.009.
- Hadadi E, Zhang B, Baidžajevas K, et al. Differential IL-1β secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability. Sci Rep. 2016;6:39035. doi: 10.1038/srep39035.
- do Brito Valente AF, Jaspers RT, Wüst RC. Regular physical exercise mediates the immune response in atherosclerosis. Exerc Immunol Rev. 2021;27:42-53.
- Campbell JP, Turner JE. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front Immunol. 2018;9:648. doi: 10.3389/fimmu.2018.00648
- Aw NH, Canetti E, Suzuki K, Goh J. Monocyte Subsets in Atherosclerosis and Modification with Exercise in Humans. Antioxidants (Basel). 2018;7(12):196. doi: 10.3390/antiox7120196.
- Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. Prog Mol Biol Transl Sci. 2015;135:355-80. doi: 10.1016/bs.pmbts.2015.08.001.
- Szlezak AM, Szlezak SL, Keane J, et al. Establishing a dose-response relationship between acute resistance-exercise and the immune system: Protocol for a systematic review. Immunol Lett. 2016;180:54-65. doi: 10.1016/j.imlet.2016.10.010.
- Durrer C, Francois M, Neudorf H, Little JP. Acute high-intensity interval exercise reduces human monocyte Toll-like receptor 2 expression in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2017;312(4):R529-R538. doi: 10.1152/ajpregu.00348.2016.
- LaVoy EC, Bollard CM, Hanley PJ, et al. A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cell Immunol. 2015;295(1):52-9. doi: 10.1016/j.cellimm.2015.02.007.
- Slusher AL, Zúñiga TM, Acevedo EO. Maximal Exercise Alters the Inflammatory Phenotype and Response of Mononuclear Cells. Med Sci Sports Exerc. 2018;50(4):675-683. doi: 10.1249/MSS.0000000000001480.
- Rooney BV, Bigley AB, LaVoy EC, et al. Lymphocytes and monocytes egress peripheral blood within minutes after cessation of steady state exercise: A detailed temporal analysis of leukocyte extravasation. Physiol Behav. 2018;194:260-267. doi: 10.1016/j.physbeh.2018.06.008.
- Paulsen G, Lauritzen F, Bayer ML, et al. Subcellular movement and expression of HSP27, alphaB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. J Appl Physiol (1985). 2009;107(2):570-82. doi: 10.1152/japplphysiol.00209.2009.
- Paulsen G, Vissing K, Kalhovde JM, et al. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R844-53. doi: 10.1152/ajpregu.00677.2006.
- Thompson HS, Clarkson PM, Scordilis SP. The repeated bout effect and heat shock proteins: intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans. Acta Physiol Scand. 2002;174(1):47-56. doi: 10.1046/j.1365-201x.2002.00922.x.
- Gjøvaag TF, Dahl HA. Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol. 2006;98(3):310-22. doi: 10.1007/s00421-006-0281-y.
- Dimauro I, Grazioli E, Lisi V, et al. Systemic Response of Antioxidants, Heat Shock Proteins, and Inflammatory Biomarkers to Short-Lasting Exercise Training in Healthy Male Subjects. Oxid Med Cell Longev. 2021;2021:1938492. doi: 10.1155/2021/1938492.
- Micielska K, Gmiat A, Zychowska M, et al. The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabetes Res Clin Pract. 2019;152:156-165. doi: 10.1016/j.diabres.2019.05.009.
- Féasson L, Stockholm D, Freyssenet D, et al. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol. 2002;543(Pt 1):297-306. doi: 10.1113/jphysiol.2002.018689.
- Morton JP, MacLaren DP, Cable NT, et al. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamaging treadmill exercise. J Appl Physiol (1985). 2006;101(1):176-82. doi: 10.1152/japplphysiol.00046.2006.
- Christiansen D, Murphy RM, Bangsbo J, et al. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol (Oxf). 2018;223(2):e13045. doi: 10.1111/apha.13045.
- Ao L, Zhai Y, Jin C, et al. Attenuated recovery of contractile function in aging hearts following global ischemia/reperfusion: Role of extracellular HSP27 and TLR4. Mol Med. 2017;23:863-872. doi: 10.2119/molmed.2016.00204.
- Jin C, Cleveland JC, Ao L, et al. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med. 2014;20(1):280-9. doi: 10.2119/molmed.2014.00058.
- Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol (1985). 2009;106(4):1119-24. doi: 10.1152/japplphysiol.90368.2008.
- Fehrenbach E, Niess AM, Schlotz E, et al. Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol (1985). 2000;89(2):704-10. doi: 10.1152/jappl.2000.89.2.704.
- Fehrenbach E, Passek F, Niess AM, et al.. HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc. 2000;32(3):592-600. doi: 10.1097/00005768-200003000-00007.
- Jammes Y, Steinberg JG, Delliaux S, Brégeon F. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med. 2009;266(2):196-206. doi: 10.1111/j.1365-2796.2009.02079.x.
- Kon M, Taniguchi K, Ebi Y, Nakagaki K. Effects of high-intensity interval exercise under hyperoxia on HSP27 and oxidative stress responses. Respir Physiol Neurobiol. 2021;283:103544. doi: 10.1016/j.resp.2020.103544.
- Tan XR, Low ICC, Soong TW, Lee JKW. Pre-exercise hot water immersion increased circulatory heat shock proteins but did not alter muscle damage markers or endurance capacity after eccentric exercise. Temperature (Austin). 2024;11(2):157-169. doi: 10.1080/23328940.2024.2313954.
- Brerro-Saby C, Delliaux S, Steinberg JG, et al. Combination of two oxidant stressors suppresses the oxidative stress and enhances the heat shock protein 27 response in healthy humans. Metabolism. 2010;59(6):879-86. doi: 10.1016/j.metabol.2009.10.006
- Kim JH, Jung YS, Kim JW, et al. Effects of aquatic and land-based exercises on amyloid beta, heat shock protein 27, and pulse wave velocity in elderly women. Exp Gerontol. 2018;108:62-68. doi: 10.1016/j.exger.2018.03.024.
- Gmiat A, Micielska K, Kozłowska M, et al. The impact of a single bout of high intensity circuit training on myokines' concentrations and cognitive functions in women of different age. Physiol Behav. 2017;179:290-297. doi: 10.1016/j.physbeh.2017.07.004.
- Périard JD, Ruell P, Caillaud C, Thompson MW. Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity. Cell Stress Chaperones. 2012;17(3):375-83. doi: 10.1007/s12192-011-0313-3.
- Min HJ, Min SJ, Kang H, Kim KS. Differential Nasal Expression of Heat Shock Proteins 27 and 70 by Aerobic Exercise: A Preliminary Study. Int J Med Sci. 2020;17(5):640-646. doi: 10.7150/ijms.39631.
- Tezel G, Wax MB. The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci. 2000;20(10):3552-62. doi: 10.1523/JNEUROSCI.20-10-03552.2000.
- Jia D, Tian Z, Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res Rev. 2023;91:102087. doi: 10.1016/j.arr.2023.102087.
- Delliaux S, Brerro-Saby C, Steinberg JG, Jammes Y. Reactive oxygen species activate the group IV muscle afferents in resting and exercising muscle in rats. Pflugers Arch. 2009;459(1):143-50. doi: 10.1007/s00424-009-0713-8.
- Murlasits Z, Cutlip RG, Geronilla KB, et al. Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Exp Gerontol. 2006;41(4):398-406. doi: 10.1016/j.exger.2006.01.005.
- Siu PM, Alway SE. Age-related apoptotic responses to stretch-induced hypertrophy in quail slow-tonic skeletal muscle. Am J Physiol Cell Physiol. 2005;289(5):C1105-13. doi: 10.1152/ajpcell.00154.2005.
- Ceci R, Beltran Valls MR, Duranti G, et al. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biol. 2014;2:65-72. doi: 10.1016/j.redox.2013.12.004
- Fehrenbach E, Niess AM, Voelker K, et al. Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med. 2005;26(7):552-7. doi: 10.1055/s-2004-830334.
- Decherchi P, Darques JL, Jammes Y. Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue. J Peripher Nerv Syst. 1998;3(4):267-76.
- Peterson RA, König C, Zimmermann K, Barry CM, Wiklendt L, Brookes SJH. Effects of Lactate on One Class of Group III (CT3) Muscle Afferents. Front Cell Neurosci. 2020;14:215. doi: 10.3389/fncel.2020.00215.
Supplementary files
