A personalized approach to medical rehabilitation for patients with rhinosinusitis with nasal polyps and comorbid asthma

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Personalized medical rehabilitation options are required for patients with chronic rhinosinusitis with nasal polyps owning to the relatively high prevalence of this disease, its long and often uncontrolled course, and the significant decrease in quality of life of patients. Comorbid asthma is common in patients with rhinosinusitis with nasal polyps and is associated with more severe clinical manifestations and increased unresponsiveness to therapy, reducing the effectiveness of rehabilitation efforts.

AIM: The aim of the study was to identify predictors of personalized comprehensive rehabilitation options to be used in patients with rhinosinusitis with nasal polyps and comorbid asthma in order to achieve greater clinical effectiveness of therapy and control of nasal polyps.

MATERIALS AND METHODS: The study was conducted in 35 patients with rhinosinusitis with nasal polyps and comorbid asthma. Comprehensive medical rehabilitation included endonasal use of Nasonex 2 doses twice daily; nasal rinsing twice daily; subcutaneous use of dupilumab at 300 µg every 2 weeks; use of low-dose inhaled corticosteroid (beclomethasone dipropionate at 200 µg twice daily); a course of alternating magnetic field therapy, low-intensity laser radiation, and interval hypoxic training. At baseline, nasal polyp severity, respiratory function, quality of life, and levels of cytokines, immunoglobulins, leukocytes, lymphocytes, and eosinophils were assessed. The effectiveness of rehabilitation measures was assessed 6 months after the start of treatment using the International Classification of Functioning, Disability, and Health criteria.

RESULTS: Using multiple regression analysis, an information model was developed to predict effectiveness of comprehensive medical rehabilitation in patients with rhinosinusitis with nasal polyps and comorbid asthma. The resulting attribute of the model was the final score of the seven selected domains of the International Classification of Functioning, Disability, and Health. A cluster of baseline clinical and laboratory variables was identified as predictors, including blood eosinophil level, blood tumor necrosis factor-alpha (TNF-alpha) level, total score for a 22-item Sino-Nasal Outcome Test (SNOT-22) functional domain, and forced expiratory volume in one second. Higher level of rehabilitation was achieved with the following baseline characteristics: blood eosinophil counts no more than 0.85 × 109/L; blood TNF-α level no more than 18.0 pg/mL; total score for the SNOT-22 functional domain no more than 8; forced expiratory volume in one second no less than 2.6 L.

CONCLUSION: At baseline, the identified thresholds of the selected predictors predict the outcome that could be achieved for each patient who receives personalized comprehensive rehabilitation.

Full Text

Restricted Access

About the authors

Tatyana G. Pelishenko

Clinical hospital 1 of the Department of Presidential Affairs of the Russian Federation

Email: doctor217@mail.ru
ORCID iD: 0000-0001-6597-2167
SPIN-code: 4176-8850

MD, Сand. Sci. (Medicine)

Russian Federation, Moscow

Larisa S. Kruglova

Central State Medical Academy of Department of Presidential Affairs

Email: kruglovals@mail.ru
ORCID iD: 0000-0002-5044-5265
SPIN-code: 1107-4372

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Sergey N. Nagornev

Central State Medical Academy of Department of Presidential Affairs

Author for correspondence.
Email: drnag@mail.ru
ORCID iD: 0000-0002-1190-1440
SPIN-code: 2099-3854

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Valery V. Boyarintsev

Central State Medical Academy of Department of Presidential Affairs

Email: wpx@mail.ru
ORCID iD: 0000-0001-9707-3262
SPIN-code: 2491-7199

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Fedor N. Koriagin

Clinical hospital 1 of the Department of Presidential Affairs of the Russian Federation

Email: theodor.kor@gmail.com
ORCID iD: 0000-0002-0603-9059
SPIN-code: 4811-3855
Russian Federation, Moscow

References

  1. Eskofier BM, Klucken J. Predictive models for health deterioration: Understanding disease pathways for personalized medicine. Annu Rev Biomed Eng. 2023;25(1):131–156. EDN: SWSUTE doi: 10.1146/annurev-bioeng-110220-030247
  2. Moreira AG, Kamat D. Personalized medicine. Pediatr Ann. 2022;51(10):e379–e380. doi: 10.3928/19382359-20220803-02
  3. Benkov AA, Nagornev SN, Mamedova SS, Shabanova AS. Predictors of effectiveness in the implementation of personalized use of therapeutic physical factors in patients with metabolic syndrome. Fizioterapiya, bal’neologiya i reabilitatsiya = Russ J Physical Ther Balneother Rehabilitat. 2022;21(6):437–445. EDN: VLTKVZ doi: 10.17816/rjpbr352577
  4. Van der Wouden CH, Böhringer S, Cecchin E, et al. Generating evidence for precision medicine: Considerations made by the Ubiquitous Pharmacogenomics Consortium when designing and operationalizing the PREPARE study. Pharmacogenet Genomics. 2020;30(6):131–144. EDN: ZNYHNG doi: 10.1097/FPC.0000000000000405
  5. Cecchin E, Stocco G. Pharmacogenomics and personalized medicine. Genes (Basel). 2020;11(6):679.doi: 10.3390/genes11060679
  6. Mauriello A, Ascrizzi A, Molinari R, et al. Pharmacogenomics of cardiovascular drugs for atherothrombotic, thromboembolic and atherosclerotic risk. Genes (Basel). 2023;14(11):2057. EDN: SMVJGI doi: 10.3390/genes14112057
  7. Vuic B, Milos T, Tudor L, et al. Pharmacogenomics of dementia: Personalizing the treatment of cognitive and neuropsychiatric symptoms. Genes (Basel). 2023;14(11):2048. EDN: EWMJWQ doi: 10.3390/genes14112048
  8. Gambale E, Boddi A, Pasqui A, et al. Pharmacogenomics of soft tissue sarcomas: New horizons to understand efficacy and toxicity. Cancer Treat Res Commun. 2022;31:100528. EDN: IREOWV doi: 10.1016/j.ctarc.2022.100528
  9. Ponomarenko GN. The concept of translational medicine in physiotherapy and rehabilitation. Fizioterapiya, bal’neologiya i reabilitatsiya = Russ J Physical Ther Balneother Rehabilitat. 2014;(3):4–12. EDN: QHXAID
  10. Krysyuk OB, Obrezan AG, Ponomarenko GN. The problems of personalized vtdicine in therapeutical practice. Vestnik Saint-Petersburg univer. Medicine. 2006;(1):16–22. EDN: RTSKAF
  11. Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med. 2018;114:52–61. EDN: YDIJPN doi: 10.1016/j.freeradbiomed.2017.10.341
  12. Jacob M, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38(3):221–238. doi: 10.1002/mas.21548
  13. Luchinin AS, Lyanguzov AV. Feature selection for medical prognostic models. Vrach i informacionnye tehnologii = Medical Doctor Information Technologies. 2022;(3):54–67. EDN: RCABBS doi: 10.25881/18110193_2022_3_54
  14. Kuznetsova EV, Zhuravleva MV, Mikhailov IA, Kurnosova TI. Development of methodological approaches to the formation of a risk-based model to minimize the prevalence of adverse reactions in drug application in medical organizations of Moscow. Farmakoekonomika: Modern Pharmacoeconom Pharmacoepidemiol. 2023;16(2):248–257. EDN: QZZHKX doi: 10.17749/2070-4909/farmakoekonomika.2023.184
  15. Kuznetsova NO. Determination of diastolic dysfunction of the left ventricle by means of ECG spectral analysis with the help of a single-channel ECG monitor [dissertation abstract]: 3.1.20. Place of defence: The First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation. Moscow; 2022. 110 р. (In Russ.) EDN: ONDURN
  16. Shamkina PA, Krivopalov AA, Ryazantsev SV, et al. Epidemiology of chronic rhinosinusitis. Sovremennye problemy nauki i obrazovaniya. 2019;(3):188–206. EDN: SQILCY
  17. Mullol J, Azar A, Buchheit KM, et al. Chronic rhinosinusitis with nasal polyps: Quality of life in the biologics era. J Allergy Clin Immunol Pract. 2022;10(6):1434–1453.e9. EDN: TOGQCB doi: 10.1016/j.jaip.2022.03.002
  18. Pelaia C, Pelaia G, Maglio A, et al. Pathobiology of type 2 inflammation in asthma and nasal polyposis. J Clin Med. 2023;12(10):3371. EDN: SXSAGI doi: 10.3390/jcm12103371
  19. Striz I, Golebski K, Strizova Z, et al. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond). 2023;137(9):727–753. doi: 10.1042/CS20190281
  20. Beregansky PV, Melnikova IM, Misernitsky YL. Significance mikrocirkulatory disorders in the pathogenesis of respiratory allergy. Vestnik Surgutskogo gosudarstvennogo universiteta. Medicina. 2012;(3):6–14. EDN: RZDOIR
  21. Korkmazov MY, Kazachkov EL, Lengina MA, et al. Cause-effect factors of rhinosinusitis poliposa development. Rossiyskaya Rinologia = Russ Rhinol. 2023;31(2):124–130. EDN: HHXGVS doi: 10.17116/rosrino202331021124
  22. Shishkin AA, Karakulova YV. Vegetative disorders and serotonin of blood serum in the case of chronic rhinosinusitis polyposa. Med Almanac. 2017;(5):108–110. EDN: ZSBPXR
  23. Nellis JC, Payne SC. Paroxysmal autonomic dysfunction in a patient with chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2014;150(1):157–159. doi: 10.1177/0194599813509060
  24. Popov IB, Shcherbakov DA, Tyryk OB, Aleksanyan TA. New approach to treatment of polypous rhinosinusitis. Vestnik otorinolaringologii = Bull Otorhinolaryngol. 2020;85(3):48–51. EDN: ZCVCMN doi: 10.17116/otorino20208503148
  25. Polunina OS, Voronina LP, Sevostyanova IV. The role of oxidative stress in development of endothelial dysfunction at bronchial asthma. Kuban Sci Med Bulletin = Kubanskij nauchnyj medicinskij vestnik. 2011;(5):127–131. EDN: OOZDDF
  26. Laidlaw TM, Mullol J, Woessner KM, et al. Chronic rhinosinusitis with nasal polyps and asthma. J Allergy Clin Immunol Pract. 2021;9(3):1133–1141. EDN: EHGDWY doi: 10.1016/j.jaip.2020.09.063
  27. Nagornev SN, Pelishenko TG, Kruglova LS. Assessment of the efficacy of comprehensive medical rehabilitation of patients with polypoid rhinosinusitis based on the international classification of functioning, disability and health. Fiziotherapeutist = Physiotherapist. 2024;20(2):62–73. EDN: UTNNBH doi: 10.33920/med-14-2402-07
  28. Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl. 29):1–464. EDN: THMJZZ doi: 10.4193/Rhin20.600
  29. Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) and biologics: Definitions and management. J Allergy Clin Immunol. 2021;147(1):29–36. EDN: KNJTUD doi: 10.1016/j.jaci.2020.11.013
  30. Bronchial asthma. Clinical recommendations. Moscow; 2021. 118 р. (In Russ.)
  31. Dzgoeva IV, Remizova AA. Evaluation of the efficiency of the use of a low-intensity infrared laser and normobaric hypoxia with chronic generalized periodontitis in the long-term period of observations. Russ J Rehab Med. 2021;(3):64–76. EDN: THHYPA
  32. Braid J, Islam L, Gugiu C, et al. Meaningful changes for efficacy outcomes in patients with chronic rhinosinusitis with nasal polyps. World Allergy Organ J. 2023;16(5):100776. EDN: CXAMWQ doi: 10.1016/j.waojou.2023.100776
  33. Meltzer EO, Hamilos DL, Hadley JA, et al. Rhinosinusitis initiative. Rhinosinusitis: Developing guidance for clinical trials. J Allergy Clin Immunol. 2006;118(5 Suppl):S17–61. doi: 10.1016/j.jaci.2006.09.005
  34. Elishenko TG, Kruglova LS, Nagornev SN. Complex application of healing physical factors in the behavior of medical rehabilitation of patients with polypous rhinosinusitis associated with. Russ J Environmental Rehab Med. 2023;(4):32–39. EDN: ZSEWCW
  35. Khan AH, Reaney M, Guillemin I, et al. Development of Sinonasal Outcome Test (SNOT-22) domains in chronic rhinosinusitis with nasal polyps. Laryngoscope. 2022;132(5):933–941. EDN: OBOASY doi: 10.1002/lary.29766
  36. Pelishenko TG, Kruglova LS, Nagornev SN. Assessing efficacy of comprehensive medical rehabilitation of patients with polypoid rhinosinusitis on the basis of correlation adaptometry method. Fiziotherapeutist = Physiotherapist. 2024;(1):60–70. EDN: HUUYDI doi: 10.33920/med-14-2401-07
  37. Burmenskaya AN. Systematic review the international classification of functioning, disability and health in russian-language publications. Domestic J Social Work. 2023;(3):180–187. EDN: VUEJGE
  38. Shoshmin AV, Ponomarenko GN. ICF in rehabilitation. 2nd revised and updated. Saint Petersburg; 2020. 232 р. (In Russ.) EDN: UTPVBZ
  39. Chalganova AA. Construction of multiple regression and assessment of model quality using Excel spreadsheet processor. Textbook for the discipline ‘Econometrics’. Saint Petersburg: Russian State Hydrometeorological University; 2022. 90 р. (In Russ.) EDN: BVEKEO
  40. Gevaert P, Han JK, Smith SG, et al. The roles of eosinophils and interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2022;12(11):1413–1423. EDN: ADRMCU doi: 10.1002/alr.22994
  41. Rosati D, Rosato C, Pagliuca G, et al. Predictive markers of long-term recurrence in chronic rhinosinusitis with nasal polyps. Am J Otolaryngol. 2020;41(1):102286. doi: 10.1016/j.amjoto.2019.102286
  42. Corren J, Pham TH, Garcia Gil E, et al. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy. 2022;77(6):1786–1796. doi: 10.1111/all.15197
  43. Fitzgerald JM, Bleecker ER, Menzies-Gow A, et al. Predictors of enhanced response with benralizumab for patients with severe asthma: Pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir Med. 2018;6(1):51–64. doi: 10.1016/S2213-2600(17)30344-2
  44. Qing X, Zhang Y, Peng Y, et al. Mir-142-3p regulates inflammatory response by contributing to increased TNF-α in chronic rhinosinusitis with nasal polyposis. Ear Nose Throat J. 2021;100(1):NP50–NP56. doi: 10.1177/0145561319847972
  45. Li L, Zhang Y, Liu H, et al. Exploring causal relationships between inflammatory cytokines and allergic rhinitis, chronic rhinosinusitis, and nasal polyps: A Mendelian randomization study. Front Immunol. 2023;(14):1288517. doi: 10.3389/fimmu.2023.1288517
  46. Habib N, Pasha MA, Tang DD. Current understanding of asthma pathogenesis and biomarkers. Cells. 2022;11(17):2764. doi: 10.3390/cells11172764
  47. Choi JP, Kim YS, Kim OY, et al. TNF-alpha is a key mediator in the development of Th2 cell response to inhaled allergens induced by a viral PAMP double-stranded RNA. Allergy. 2012;67(9):1138–1148. doi: 10.1111/j.1398-9995.2012.02871.x
  48. Sieck GC, Dogan M, Young-Soo H, et al. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle. Physiol Rep. 2019;7(17):e14220. doi: 10.14814/phy2.14220
  49. Huang C, Izmailova ES, Jackson N, et al. Remote FEV1 monitoring in asthma patients: A pilot study. Clin Transl Sci. 2021;14(2):529–535. doi: 10.1111/cts.12901
  50. Dunican EM, Elicker BM, Gierada DS, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest. 2018;128(3):997–1009. doi: 10.1172/JCI95693
  51. Sakai N, Koya T, Murai Y, et al. Effect of benralizumab on mucus plugs in severe eosinophilic asthma. Int Arch Allergy Immunol. 2023;184(8):783–791. doi: 10.1159/000530392

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.