Plasma medicine: Prospects and experience of application of low-temperature argon plasma in medical rehabilitation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Plasma medicine is a dynamically developing field of science based on the physical and chemical properties of air-plasma flows.

Low-temperature plasma is a partially ionized gas with a temperature of about 40ºC, the synergistic interaction of its active substances is a successful method of sterilization, decontamination of wound surfaces, treatment of surgical and burn wounds. Due to the combined action, over the past decades, low-temperature plasma has proven itself in purulent surgery, dermatology, and dentistry, but in addition, it has opened up great prospects in oncology. Possessing the effects of inhibiting inflammatory processes, stimulating regeneration processes, improving microcirculation and tissue metabolism, plasma flows are also used in medical rehabilitation.

The review considers the possibilities of using low-temperature plasma in various fields of medicine, as well as the effect of plasma flows on basic cellular processes and various forms of cell death. The experience of using low-temperature argon plasma in the complex rehabilitation of patients with malignant neoplasms is presented.

Literature sources from Russian and foreign databases (Elibrary, PubMed) on the topic of low-temperature plasma application in medical practice were analyzed. The analysis showed that plasma medicine is a rapidly developing modern direction, opening up new opportunities in healthcare.

Further studies of plasma streams are needed to unlock their full therapeutic potential and fully understand the mechanisms of action.

Full Text

Restricted Access

About the authors

Valeriia O. Kozyreva

Russian Medical Academy of Continuous Professional Education

Author for correspondence.
Email: kvo03@yandex.ru
ORCID iD: 0000-0002-1103-704X
SPIN-code: 6936-0576

Graduate Student

Russian Federation, Moscow

References

  1. Schuster M, Seebauer C, Rutkowski R, et al. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J Craniomaxillofac Surg. 2016;44(9):1445–1452. doi: 10.1016/j.jcms.2016.07.001
  2. Weltmann KD, von Woedtke T. Plasma medicine — current state of research and medical application. Plasma Physics Controlled Fusion. 2016;59(1):014031. doi: 10.1088/0741-3335/59/1/014031
  3. Chauvin J, Judée F, Yousfi M, et al. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci Rep. 2017;7(1):45–62. doi: 10.1038/s41598-017-04650-4
  4. Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96. doi: 10.1111/iwj.12557
  5. Graves DB. Mechanisms of plasma medicine: Coupling plasma physics, biochemistry, and biology. IEEE Trans Radiat Plasma Med Sci. 2017;1(4):281–292. doi: 10.1109/TRPMS.2017.2710880
  6. Balan GG, Rosca I, Ursu EL, et al. Plasma-activated water: A new and effective alternative for duodenoscope reprocessing. Infect Drug Resist. 2018;17(11):727–733. doi: 10.2147/IDR.S159243
  7. Nicol MJ, Brubaker TR, Honish BJ, et al. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep. 2020;10(1):30–66. doi: 10.1038/s41598-020-59652-6
  8. Zhukhovitsky VG, Kazakova MV, Sysolyatina EV, et al. Bactericidal effect of low-temperature plasma against helicobacter pylori in vitro. Exp Clin Gastroenterol. 2019;163(3):51–57. (In Russ). doi: 10.31146/1682-8658-ecg-163-3-51-57
  9. Plattfaut I, Besser M, Severing AL, et al. Plasma medicine and wound management: Evaluation of the antibacterial efficacy of a medically certified cold atmospheric argon plasma jet. Int J Antimicrob Agents. 2021;57(5):106319. doi: 10.1016/j.ijantimicag.2021.106319
  10. Liu T, Wu L, Babu JP, et al. Effects of atmospheric non-thermal argon/oxygen plasma on biofilm viability and hydrophobicity of oral bacteria. Am J Dent. 2017;30(1):52–56.
  11. Strohal R, Dietrich S, Mittlböck M, Hämmerle G. Chronic wounds treated with cold atmospheric plasmajet versus best practice wound dressings: A multicenter, randomized, non-inferiority trial. Sci Rep. 2022;12(1):36–45. doi: 10.1038/s41598-022-07333-x
  12. Stratmann B, Costea TC, Nolte C, et al. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers: A randomized clinical trial. JAMA Netw Open. 20201;3(7):e2010411. doi: 10.1001/jamanetworkopen.2020.10411
  13. Shulutko AM, Osmanov EG, Chanturiya MO, Macharadze AD. The plasma flows in surgical practice. Med J Russ Federation. 2018;24(2):93–98. (In Russ). doi: 10.18821/0869-2106-2018-24-2-93-98
  14. Arndt S, Unger P, Wacker E, et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One. 2013;8(11):79325. doi: 10.1371/journal.pone.0079325
  15. Chatraie M, Torkaman G, Khani M, et al. In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci Rep. 2018;8(1):56–21. doi: 10.1038/s41598-018-24049-z
  16. Cheng KY, Lin ZH, Cheng YP, et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci Rep. 2018;8(1):12–14. doi: 10.1038/s41598-018-30597-1
  17. Kubinova S, Zaviskova K, Uherkova LP, et al. Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci Rep. 2017;7:45183. (In Russ). doi: 10.1038/srep45183
  18. Lou BS, Hsieh JH, Chen CM, et al. Helium/Argon-Generated cold atmospheric plasma facilitates cutaneous wound healing. Front Bioeng Biotechnol. 2020;8(1):683. doi: 10.3389/fbioe.2020.00683
  19. Frolov SA, Kuzminov AM, Vyshegorodtsev DV, et al. The possibilities of using low-temperature argon plasma in the treatment of postoperative and long-term non-healing wounds. Russ J Gastroenterol Hepatol Coloproctol. 2019;29(6):15–21. (In Russ). doi: 10.22416/1382-4376-2019-29-6-15-21
  20. Zinovyev EV, Tsygan VN, Asadulayev MS, et al. Possibilities of use of arc-type discharge low-temperature air plasma of atmospheric pressure for burn wound treatment. Bulletin Russ Military Med Academy. 2018;20(2):171–176. (In Russ). doi: 10.17816/brmma12315
  21. Osmanov KF, Zinoviev EV, Bogdanov SB. Air plasma as a physical method to improve the treatment of burn wounds. Med Theory Pract. 2020;4(3):125–129. (In Russ).
  22. Hartwig S, Doll C, Voss JO, et al. Treatment of wound healing disorders of radial forearm free flap donor sites using cold atmospheric plasma: A proof of concept. J Oral Maxillofacial Sur. 2017;75(2):429–435. doi: 10.1016/j.joms.2016.08.011
  23. Kuzminov AM, Frolov SA, Vyshegorodtsev DV, et al. The first experience of using low-temperature argon plasma in the treatment of wounds after open hemorrhoidectomy. Sur News. 2020;28(5):543–550. (In Russ). doi: 10.18484/2305-0047.2020.5.543
  24. Frolov SA, Kuzminov AM, Vyshegorodtsev DV, et al. Low-temperature argon plasma in the wounds treatment after hemorrhoidectomy. Koloproktologia. 2021;20(3):51–61. (In Russ). doi: 10.33878/2073-7556-2021-20-3-51-61
  25. Bernhardt T, Semmler ML, Schäfer M, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxid Med Cell Longev. 2019;(3):3873928. doi: 10.1155/2019/3873928
  26. He Z, Liu K, Scally L, et al. Cold atmospheric plasma stimulates clathrin-dependent endocytosis to repair oxidised membrane and enhance uptake of nanomaterial in glioblastoma multiforme cells. Sci Rep. 2020;10(1):69–85. doi: 10.1038/s41598-020-63732-y
  27. Biscop E, Lin A, Boxem WV, et al. Influence of cell type and culture medium on determining cancer selectivity of cold atmospheric plasma treatment. Cancers (Basel). 2019;11(9):12–87. doi: 10.3390/cancers11091287
  28. Van Loenhout J, Flieswasser T, Freire Boullosa L, et al. Cold atmospheric plasma-treated PBS eliminates immunosuppressive pancreatic stellate cells and induces immunogenic cell death of pancreatic cancer cells. Cancers (Basel). 2019;11(10):15–97. doi: 10.3390/cancers11101597
  29. Lin A, Stapelmann K, Bogaerts A. Advances in plasma oncology toward clinical translation. Cancers. 2020;12(11):32–83. doi: 10.3390/cancers12113283
  30. Motaln H, Recek N, Rogelj B. Intracellular responses triggered by cold atmospheric plasma and plasma-activated media in cancer cells. Molecules. 2021;26(5):1336. doi: 10.3390/molecules26051336
  31. Vaquero J, Judée F, Vallette M, et al. Cold-Atmospheric plasma induces tumor cell death in preclinical in vivo and in vitro models of human cholangiocarcinoma. Cancers (Basel). 2020;12(5):1280. doi: 10.3390/cancers12051280
  32. Zubor P, Wang Y, Liskova A, et al. Cold atmospheric pressure plasma (CAP) as a new tool for the management of vulva cancer and vulvar premalignant lesions in gynaecological oncology. Int J Mol Sci. 2020;21(21):7988. doi: 10.3390/ijms21217988
  33. Xu D, Ning N, Xu Y, et al. Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells. Cancer Cell Int. 2019;19(1):135. doi: 10.1186/s12935-019-0856-4
  34. Alimohammadi M, Golpur M, Sohbatzadeh F, et al. Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo. Biomolecules. 2020;10(7):1011. doi: 10.3390/biom10071011
  35. Gümbel D, Bekeschus S, Gelbrich N, et al. Cold atmospheric plasma in the treatment of osteosarcoma. Int J Mol Sci. 2017;18(9):2004. doi: 10.3390/ijms18092004
  36. Jo A, Joh HM, Chung TH, Chung JW. Anticancer effects of plasma-activated medium produced by a microwave-excited atmospheric pressure argon plasma jet. Oxid Med Cell Longev. 2020;(2020):4205640. doi: 10.1155/2020/4205640
  37. Jan D, Cui H, Zhu W, et al. The specific vulnerabilities of cancer cells to the cold atmospheric plasma-stimulated solutions. Sci Rep. 2017;7(1):4479. doi: 10.1038/s41598-017-04770-x
  38. Sole-Marti X, Espona-Noguera A, Ginebra MP, Canal C. Plasma-Conditioned liquids as anticancer therapies in vivo: Current state and future directions. Cancers (Basel). 2021;13(3):452. doi: 10.3390/cancers13030452
  39. Tornin J, Mateu-Sanz M, Rodríguez A, et al. Pyruvate plays a main role in the antitumoral selectivity of cold atmospheric plasma in osteosarcoma. Sci Rep. 2019;9(1):10681. doi: 10.1038/s41598-019-47128-1
  40. Chen CY, Cheng YC, Cheng YJ. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment. J Physics D Applied Physics. 2020;51(13):aaafc4. doi: 10.1088/1361-6463/aaafc4
  41. Evstigneeva IS, Gerasimenko MY, Esimova IE. Application of physical factors at the first stage of medical rehabilitation after radical surgical treatment of breast cancer. Bulletin Rehabilitation Med. 2022;21(2):127–138. (In Russ). doi: 10.38025/2078-1962-2022-21-2-127-138
  42. Gerasimenko MY, Evstigneeva IS, Kozyreva VO. The use of low-temperature argon plasma and general magnetotherapy in the early postoperative period after surgical treatment of breast cancer. Physiotherapist. 2022;1(1):47–58. (In Russ). doi: 10.33920/med-14-2202-06
  43. Patent RUS № 2021135534А/03.12.21. Byul. № 22. Evstigneeva IS, Gerasimenko MYu, Kozyreva VO, et al. A method of treating patients after radical surgical treatment of breast cancer. (In Russ). Available from: https://patents.google.com/patent/RU2777347C1/ru. Accessed: 15.07.2022.
  44. Evstigneeva IS, Kozyreva VO, Gerasimenko MY. Experience of using low-temperature plasma in the therapy of radiation reactions. Physiotherapy Balneology Rehabilitation. 2021;20(6):559–566. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient diagnosed with breast cancer on the 2nd day after surgery.

Download (156KB)
3. Fig. 2. Patient with a radiation reaction of the skin on the background of external beam radiation therapy.

Download (153KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies