Peculiarities of the course of COVID-19 in patients with chronic noncommunicable diseases (literature review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An electronic search for publications on the features of the course of COVID-19 in patients with the most common chronic noncommunicable diseases (arterial hypertension, diabetes mellitus and obesity) was carried out using the Scopus, Web of Science, MedLine, The Cochrane Library, EMBASE, Global Health, CyberLeninka databases, RSCI, as well as journals peer-reviewed by the Higher Attestation Commission. The review analyzed the effect of comorbidity on the prognosis of a new coronavirus infection (complication rate, severity of the course, mortality). It has been shown that previous noncommunicable diseases are a significant risk factor for adverse outcomes in patients with COVID-19, and if the effect of arterial hypertension is not confirmed by all authors, then type 2 diabetes mellitus, as well as any degree of obesity, are important prognostic signs of an unfavorable course of the new coronavirus infections.

Thus, in the context of the COVID-19 pandemic, patients suffering from chronic noncommunicable diseases need more careful monitoring and preventive measures aimed not only at preventing infection with the new coronavirus, but also at slowing the progression of these pathologies and their complications.

Full Text

Restricted Access

About the authors

Maisiyat М. Sharipova

Yevdokimov Moscow State University of Medicine and Dentistry

Email: maisiyat@bk.ru
ORCID iD: 0000-0001-7452-1122
SPIN-code: 8438-6386

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Maria V. Ivkina

Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: terekhova_m@mail.ru
ORCID iD: 0000-0001-5261-3552
SPIN-code: 7054-2171

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Anna N. Arkhangelskaya

Yevdokimov Moscow State University of Medicine and Dentistry

Email: cattiva@list.ru
ORCID iD: 0000-0002-0792-6194
SPIN-code: 4434-5712

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Konstantin G. Gurevich

Yevdokimov Moscow State University of Medicine and Dentistry

Email: kgurevich@mail.ru
ORCID iD: 0000-0002-7603-6064
SPIN-code: 4344-3045

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Zolnikova OYu, Svistunov AA, Ivashkin VT. SARS-COV-2: Immune response, structural changes, treatment strategies. Human Ecology. 2021;28(1):4–10. doi: 10.33396/1728-0869-2021-1-4-10
  2. Ejaz H, Alsrhani A, Zafar A, et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020;13(12):1833–1839. doi: 10.1016/j.jiph.2020.07.014
  3. Renu K, Prasanna PL, Valsala Gopalakrishnan A. Coronaviruses pathogenesis, comorbidities and multi-organ damage — A review. Life Sci. 2020;255:117839. doi: 10.1016/j.lfs.2020.117839
  4. Kostinov MP, Shmitko AD, Polishchuk VB, Khromova EA. Modern representations of the new coronavirus and the disease caused by SARS-COV-2. Infectious Diseases: News, Opinions, Training. 2020;9(2):33–42. (In Russ). doi: 10.33029/2305-3496-2020-9-2-33-42
  5. Jeong IK, Yoon KH, Lee MK. Diabetes and COVID-19: Global and regional perspectives. Diabetes Res Clin Pract. 2020;166:108303. doi: 10.1016/j.diabres.2020.108303
  6. Gromova OA, Torshin IYu. The importance of zinc in maintaining the activity of antiviral innate immunity proteins: Analysis of publications on COVID-19. Profilakticheskaya Meditsina. 2020;23(3):131–139. (In Russ). doi: 10.17116/profmed202023031131
  7. Mitkovskaya N, Grigorenko E, Ruzanov D, Statkevich T. Coronavirus infection COVID-19 and comorbidity. Science and Innovations. 2020;(7):50–60. (In Russ). doi: 10.29235/1818-9857-2020-7-50-60
  8. Joachimiak MP. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis. 2021;15(1):e0008895. doi: 10.1371/journal.pntd.0008895
  9. Barone MTU, Ngongo B, Harnik SB, et al. COVID-19 associated with diabetes and other noncommunicable diseases led to a global health crisis. Diabetes Res Clin Pract. 2021;171:108587. doi: 10.1016/j.diabres.2020.108587
  10. Cheng S, Zhao Y, Wang F, et al. Comorbidities’ potential impacts on severe and non-severe patients with COVID-19: A systematic review and meta-analysis. Medicine (Baltimore). 2021;100(12):e24971. doi: 10.1097/MD.0000000000024971
  11. Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623–628. doi: 10.1111/j.1464-5491.2006.01861.x
  12. Bloomgarden ZT. Diabetes and COVID-19. J Diabetes. 2020;12(4):347–348. doi: 10.1111/1753-0407.13027
  13. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618–625. doi: 10.1111/j.1365-2362.2009.02153.x
  14. Alhogbani T. Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Ann Saudi Med. 2016;36(1):78–80. doi: 10.5144/0256-4947.2016.78
  15. Petrakis D, Margină D, Tsarouhas K, et al. Obesity — A risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 2020;22(1):9–19. doi: 10.3892/mmr.2020.11127
  16. Babenko AYu, Laevskaya MYu. Diabetes mellitus and COVID-19. How are they connected? Current strategy of fight. Arterial Hypertension. 2020;26(3):304–311. (In Russ). doi: 10.18705/1607-419X-2020-26-3-304-311
  17. NCD Countdown 2030 collaborators. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet. 2018;392(10152):1072–1088. doi: 10.1016/S0140-6736(18)31992-5
  18. Najem RN, Halawi A, Tanios B, et al. May measurement month 2019: An analysis of blood pressure screening results from Lebanon. Eur Heart J Suppl. 2021;23(Suppl. B):B92–B94. doi: 10.1093/eurheartj/suab037
  19. Shishkova VN, Kapustina LA. Problems of the comorbid patient: How to choose the right statin. Effective Pharmacotherapy. 2017;(1):14–23. (In Russ).
  20. Karetnikova VN, Zvereva TN, Barbarash OL. Current features of management of comorbid patients with hypertension. Medical Alphabet. 2019;2(30):6–11. (In Russ). doi: 10.33667/2078-5631-2019-2-30(405)-6-11
  21. Polozova EI, Seskina AA, Puzanova EV, et al. Comorbid conditions in patients with arterial hypertension. Current Problems of Science and Education. 2019;(4):135. (In Russ).
  22. Chazova IE, Blinova NV, Nevzorova VA, et al. Russian Medical Society for Arterial Hypertension Expert Consensus: Hypertension and COVID-19. Systemic Hypertension. 2020;17(3):35–41. (In Russ). doi: 10.26442/2075082X.2020.3.200362
  23. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): A pooled analysis. Pol Arch Intern Med. 2020;130(4):304–309. doi: 10.20452/pamw.15272
  24. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017
  25. Gasmi A, Peana M, Pivina L, et al. Interrelations between COVID-19 and other disorders. Clin Immunol. 2021;224:108651. doi: 10.1016/j.clim.2020.108651
  26. Rodilla E, Saura A, Jiménez I, et al. Association of hypertension with all-cause mortality among hospitalized patients with COVID-19. J Clin Med. 2020;9(10):3136. doi: 10.3390/jcm9103136
  27. Iaccarino G, Grassi G, Borghi C, et al.; SARS-RAS Investigators. Age and multimorbidity predict death among COVID-19 patients: Results of the SARS-RAS study of the Italian society of hypertension. Hypertension. 2020;76(2):366–372. doi: 10.1161/HYPERTENSIONAHA.120.15324
  28. Sun Y, Guan X, Jia L, et al. Independent and combined effects of hypertension and diabetes on clinical outcomes in patients with COVID-19: A retrospective cohort study of Huoshen Mountain Hospital and Guanggu Fangcang Shelter Hospital. J Clin Hypertens (Greenwich). 2021;23(2):218–231. doi: 10.1111/jch.14146
  29. Leiva Sisnieguez CE, Espeche WG, Salazar MR. Arterial hypertension and the risk of severity and mortality of COVID-19. Eur Respir J. 2020;55(6):2001148. doi: 10.1183/13993003.01148-2020
  30. Dedov II, Shestakova MV, Mayorov AYu, editors. Standards of specialized diabetes care. 9th ed. Diabetes Mellitus. 2019;22(1S1):1–144. (In Russ). doi: 10.14341/DM221S1
  31. Nikoloski Z, Alqunaibet AM, Alfawaz RA, et al. COVID-19 and non-communicable diseases: Evidence from a systematic literature review. BMC Public Health. 2021;21(1):1068. doi: 10.1186/s12889-021-11116-w
  32. Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(6):546–550. doi: 10.1016/S2213-8587(20)30152-2
  33. Nandy K, Salunke A, Pathak SK, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr. 2020;14(5):1017–1025. doi: 10.1016/j.dsx.2020.06.064
  34. Das S, K RA, Birangal SR, et al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sci. 2020;258:118202. doi: 10.1016/j.lfs.2020.118202
  35. Mahluji S, Jalili M, Ostadrahimi A, et al. Nutritional management of diabetes mellitus during the pandemic of COVID-19: a comprehensive narrative review. J Diabetes Metab Disord. 2021;20(1):963–972. doi: 10.1007/s40200-021-00784-5
  36. Demidova TYu, Volkova ЕV, Grickevich ЕYu. Obesity and COVID-19: A fatal link. Infectious Diseases: News, Opinions, Training. 2020;9(Suppl. 3):25–32. (In Russ). doi: 10.33029/2305-3496-2020-9-3S-25-32
  37. Maddaloni E, D’Onofrio L, Alessandri F, et al.; CoViDiab Study Group. Cardiometabolic multimorbidity is associated with a worse COVID-19 prognosis than individual cardiometabolic risk factors: a multicentre retrospective study (CoViDiab II). Cardiovasc Diabetol. 2020;19(1):164. doi: 10.1186/s12933-020-01140-2
  38. Salazar MR. Is hypertension without any other comorbidities an independent predictor for COVID-19 severity and mortality? J Clin Hypertens (Greenwich). 2021;23(2):232–234. doi: 10.1111/jch.14144
  39. Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–822. doi: 10.1016/S2213-8587(20)30272-2
  40. Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr. 2020;14(4):513–517. doi: 10.1016/j.dsx.2020.04.049
  41. Grinevich VB, Gubonina IV, Doshchitsin VL, et al. Management of patients with comorbidity during novel coronavirus (COVID-19) pandemic. National Consensus Statement 2020. Cardiovascular Therapy and Prevention. 2020;19(4):2630. (In Russ). doi: 10.15829/1728-8800-2020-2630
  42. Mishchenkova TV, Zvenigorodskaya LA. Obesity — A new non-infectious “Epidemic”. Experimental and Clinical Gastroenterology. 2011;(11):9–14. (In Russ).
  43. Caballero B. Humans against Obesity: Who will win? Adv Nutr. 2019;10(Suppl. 1):S4–S9. doi: 10.1093/advances/nmy055
  44. Martinchik AN, Laikam KE, Kozyreva NA, et al. The prevalence of obesity in various socio-demographic groups of the population of Russia. Problems of Nutrition. 2021;90(3):67–76. (In Russ). doi: 10.33029/0042-8833-2021-90-3-67-76
  45. Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21(11):e13128. doi: 10.1111/obr.13128. Erratum in: Obes Rev. 2021;22(10):e13305.
  46. Suleyman G, Fadel RA, Malette KM, et al. Clinical characteristics and morbidity associated with coronavirus disease 2019 in a series of patients in metropolitan Detroit. JAMA Netw Open. 2020;3(6):e2012270. doi: 10.1001/jamanetworkopen.2020.12270
  47. Simonnet A, Chetboun M, Poissy J, et al.; LICORN and the Lille COVID-19 and Obesity study group. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020;28(7):1195–1199. doi: 10.1002/oby.22831. Erratum in: Obesity (Silver Spring). 2020;28(10):1994.
  48. Kalligeros M, Shehadeh F, Mylona EK, et al. Association of obesity with disease severity among patients with coronavirus disease 2019. Obesity (Silver Spring). 2020;28(7):1200–1204. doi: 10.1002/oby.22859
  49. Muscogiuri G, Pugliese G, Barrea L, et al. Commentary: Obesity: The “Achilles heel” for COVID-19? Metabolism. 2020;108:154251. doi: 10.1016/j.metabol.2020.154251
  50. Sanchis-Gomar F, Lavie CJ, Mehra MR, et al. Obesity and outcomes in COVID-19: when an epidemic and pandemic collide. Mayo Clin Proc. 2020;95(7):1445–1453. doi: 10.1016/j.mayocp.2020.05.006
  51. Vera-Zertuche JM, Mancilla-Galindo J, Tlalpa-Prisco M, et al. Obesity is a strong risk factor for short-term mortality and adverse outcomes in Mexican patients with COVID-19: a national observational study. Epidemiol Infect. 2021;149:e109. doi: 10.1017/S0950268821001023
  52. Mohamed-Ali V, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196–4200. doi: 10.1210/jcem.82.12.4450
  53. Demidova TYu, Volkova EI, Gritskevich EYu. Peculiarities of the COVID-19 course and consequences in overweight and obese patients. Lessons from the current pandemic. Obesity and Metabolism. 2020;17(4):375–384. (In Russ). doi: 10.14341/omet12663.
  54. De Lucena TMC, da Silva Santos AF, de Lima BR, et al. Mechanism of inflammatory response in associated comorbidities in COVID-19. Diabetes Metab Syndr. 2020;14(4):597–600. doi: 10.1016/j.dsx.2020.05.025
  55. Nasonov EL. Coronavirus disease-2019 (COVID-19): value of IL-6 inhibitors. Pulmonologiya. 2020;30(5):629–644. (In Russ). doi: 10.18093/0869-0189-2020-30-5-629-644
  56. Anisenkova AY, Apalko SV, Asaulenko ZP, et al. Major predictive risk factors for а cytokine storm in COVID-19 patients (a retrospective clinical trials). Journal of Clinical Practice. 2021;12(1):5–15. (In Russ). doi: 10.17816/clinpract63552
  57. Ng WH, Tipih T, Makoah NA, et al. Comorbidities in SARS-CoV-2 patients: A systematic review and meta-analysis. mBio. 2021;12(1):e03647–20. doi: 10.1128/mBio.03647-20
  58. Cuschieri S, Grech S. At-risk population for COVID-19: Multimorbidity characteristics of a European small Island state. Public Health. 2021;192:33–36. doi: 10.1016/j.puhe.2020.12.012

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies