Exploring the Molecular Mechanism of Niuxi-Mugua Formula in Treating Coronavirus Disease 2019 via Network Pharmacology, Computational Biology, and Surface Plasmon Resonance Verification


Cite item

Full Text

Abstract

Background:In China, Niuxi-Mugua formula (NMF) has been widely used to prevent and treat coronavirus disease 2019 (COVID-19). However, the mechanism of NMF for treating COVID-19 is not yet fully understood.

Objective:This study aimed to explore the potential mechanism of NMF for treating COVID- 19 by network pharmacology, computational biology, and surface plasmon resonance (SPR) verification.

Materials and Methods:The NMF-compound-target network was constructed to screen the key compounds, and the Molecular Complex Detection (MCODE) tool was used to screen the preliminary key genes. The overlapped genes (OGEs) and the preliminary key genes were further analyzed by enrichment analysis. Then, the correlation analysis of immune signatures and the preliminary key genes was performed. Molecular docking and molecular dynamic (MD) simulation assays were applied to clarify the interactions between key compounds and key genes. Moreover, the SPR interaction experiment was used for further affinity kinetic verification.

Results:Lipid and atherosclerosis, TNF, IL-17, and NF-kappa B signaling pathways were the main pathways of NMF in the treatment of COVID-19. There was a positive correlation between almost the majority of immune signatures and all preliminary key genes. The key compounds and the key genes were screened out, and they were involved in the main pathways of NMF for treating COVID-19. Moreover, the binding affinities of most key compounds binding to key genes were good, and IL1B-Quercetin had the best binding stability. SPR analysis further demonstrated that IL1B-Quercetin showed good binding affinity.

Conclusion:Our findings provided theoretical grounds for NMF in the treatment of COVID- 19.

About the authors

Wei Wang

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Email: info@benthamscience.net

Xu Cao

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Email: info@benthamscience.net

Yi-nan Cao

Sun Simiao Hospital, Beijing University of Chinese Medicine

Email: info@benthamscience.net

Lian-lian Liu

Third School of Clinical Medicine, Beijing University of Chinese Medicine

Email: info@benthamscience.net

Shu-ling Zhang

Chinese pharmacy, Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727031, China

Email: info@benthamscience.net

Wen-ying Qi

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Email: info@benthamscience.net

Jia-xin Zhang

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Email: info@benthamscience.net

Xian-zhao Yang

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Email: info@benthamscience.net

Xiao-ke Li

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Xiao-bin Zao

Dongzhimen Hospital,, Beijing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Yong-an Ye

Gastroenterology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Tsai, T.I.; Khalili, J.S.; Gilchrist, M.; Waight, A.B.; Cohen, D.; Zhuo, S.; Zhang, Y.; Ding, M.; Zhu, H.; Mak, A.N.S.; Zhu, Y.; Goulet, D.R. ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern. Antiviral Res., 2022, 199, 105271. doi: 10.1016/j.antiviral.2022.105271 PMID: 35240221
  2. Abdullah, U.; Saleh, N.; Shaw, P.; Jalal, N. COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines (Basel), 2023, 11(2), 319. doi: 10.3390/vaccines11020319 PMID: 36851197
  3. Ma, S.; Yang, L.; Li, H.; Chen, X.; Lin, X.; Ge, W.; Wang, Y.; Sun, L.; Zhao, G.; Wang, B.; Wang, Z.; Wu, M.; Lu, X.; Akhtar, M.L.; Yang, D.; Bai, Y.; Li, Y.; Nie, H. Understanding metabolic alterations after SARS-CoV-2 infection: insights from the patients’ oral microenvironmental metabolites. BMC Infect. Dis., 2023, 23(1), 42. doi: 10.1186/s12879-022-07979-y PMID: 36690957
  4. Pluta, M.P.; Zachura, M.N.; Winiarska, K.; Kalemba, A.; Kapłan, C.; Szczepańska, A.J.; Krzych, Ł.J. Usefulness of Selected Peripheral Blood Counts in Predicting Death in Patients with Severe and Critical COVID-19. J. Clin. Med., 2022, 11(4), 1011. doi: 10.3390/jcm11041011 PMID: 35207281
  5. Mukai, K.; Tsunoda, H.; Imai, R.; Numata, A.; Kida, K.; Oba, K.; Yagishita, K.; Yamauchi, H.; Kanomata, N.; Kurihara, Y. The location of unilateral axillary lymphadenopathy after COVID-19 vaccination compared with that of metastasis from breast cancer without vaccination. Jpn. J. Radiol., 2023, 41(6), 617-624. doi: 10.1007/s11604-023-01387-1 PMID: 36626076
  6. Sun, F.; Liu, J.; Tariq, A.; Wang, Z.; Wu, Y.; Li, L. Unraveling the mechanism of action of cepharanthine for the treatment of novel coronavirus pneumonia (COVID-19) from the perspectives of systematic pharmacology. Arab. J. Chem., 2023, 16(6), 104722. doi: 10.1016/j.arabjc.2023.104722 PMID: 36910427
  7. Prabhakar, P.K.; Khurana, N.; Vyas, M.; Sharma, V.; Batiha, G.E.S.; Kaur, H.; Singh, J.; Kumar, D.; Sharma, N.; Kaushik, A.; Kumar, R. Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics, 2023, 15(2), 451. doi: 10.3390/pharmaceutics15020451 PMID: 36839773
  8. Wei, J.; Yu, Y.; Li, Y.; Shao, J.; Li, J.; Li, L.; Li, Y. Pharmacokinetics, tissue distribution and excretion of 6-O-demethylmenisporphine, a bioactive oxoisoaporphine alkaloid from Menispermi Rhizoma, as determined by a HPLC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1156, 122297. doi: 10.1016/j.jchromb.2020.122297 PMID: 32829132
  9. Lan, X.; Olaleye, O.E.; Lu, J.; Yang, W.; Du, F.; Yang, J.; Cheng, C.; Shi, Y.; Wang, F.; Zeng, X.; Tian, N.; Liao, P.; Yu, X.; Xu, F.; Li, Y.; Wang, H.; Zhang, N.; Jia, W.; Li, C. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule. Acta Pharmacol. Sin., 2021, 42(12), 2155-2172. doi: 10.1038/s41401-021-00651-2 PMID: 33931765
  10. Wu, H.; Ji, C.; Dai, R.; Hei, P.; Liang, J.; Wu, X.; Li, Q.; Yang, J.; Mao, W.; Guo, Q. Traditional Chinese medicine treatment for COVID-19: An overview of systematic reviews and meta-analyses. J. Integr. Med., 2022, 20(5), 416-426. doi: 10.1016/j.joim.2022.06.006 PMID: 35811240
  11. Zao, X.; Zhou, Y.; Liang, Y.; Cao, X.; Chen, H.; Li, X.; Ye, Y. The host immune response of a discharged COVID-19 patient with twice reemergence of SARS-CoV-2: a case report. BMC Infect. Dis., 2021, 21(1), 991. doi: 10.1186/s12879-021-06679-3 PMID: 34556058
  12. Chen, L.; Yu, M.; Liu, Y.; Zeng, M.; Zhang, C.; Huang, S. Analysis of the characteristics and curative effect of 85 cases of novel coronavirus pneumonia from the perspective of Five-Yun. Chiang-Hsi Chung I Yao, 2021, 52(10), 17-21.https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHQs2MdQ22WGM3m8IlhwcM2ycj8mXzT8qomwgBBs9P3Ey&uniplatform=NZKPT
  13. Wang, L.; Wang, M.; Mou, S. The application of the Niuxi Mugua decoction in Gengzi year. Clinical Journal of Chinese Medicine, 2023, 15(01), 101-103.https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ioT0BO4yQ4m_mOgeS2ml3UDQl-ZL75zdCaLrbZfFVihd43VszdcKtY1ASzCcqdQ2r&uniplatform=NZKPT
  14. Xu, L.; Li, Y.; Zheng, D.; Shao, Z.; Wen, S.; Lin, F.; Zeng, Z.; Song, Y. Prescription Law of New Coronavirus Pneumonia in Different Stages. Zhongguo Shiyan Fangjixue Zazhi, 2020, 26, 8-16. doi: 10.13422/j.cnki.syfjx.20201211
  15. Shi, S.; Liu, Q. On TCM Value in Treatment to COVID-19 Based on TCM Model of Jiangxia Cabin Hospital. Jiangsu Journal of Traditional Chinese Medicine, 2020, 52(04), 11-14.https://kns.cnki.net/kcms2/article/abstract?v=dlzqEeXOOWvZtVTxVn0a3GaYDE9mob0Bus_v9VQd67YdqqPI66zk-riLWx4ESpH 48k9K6rePMgLCsdWnoggEqlWJ_AHdj9mpVbpdQxfVuWtA4bwQ5A3x23CzYHY3dJuF&uniplatform=NZKPT&language=gb doi: 10.19844/j.cnki.1672-397x.2020.00.008
  16. Ming, Y.; Jiachen, L.; Tao, G.; Zhihui, W. Exploration of the Mechanism of Tripterygium Wilfordii in the Treatment of Myocardial Fibrosis Based on Network Pharmacology and Molecular Docking. Curr. Computeraided Drug Des., 2023, 19(1), 68-79. doi: 10.2174/1573409919666221028120329 PMID: 36306461
  17. Liu, S.; Wang, Z.; Zhu, R.; Wang, F.; Cheng, Y.; Liu, Y. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2. J. Vis. Exp., 2021, 175. doi: 10.3791/62528
  18. Charwudzi, A.; Meng, Y.; Hu, L.; Ding, C.; Pu, L.; Li, Q.; Xu, M.; Zhai, Z.; Xiong, S. Integrated bioinformatics analysis reveals dynamic candidate genes and signaling pathways involved in the progression and prognosis of diffuse large B-cell lymphoma. PeerJ, 2021, 9, e12394. doi: 10.7717/peerj.12394 PMID: 34760386
  19. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA. doi: 10.1002/jcc.21334 PMID: 19499576
  20. Rakhshani, H.; Dehghanian, E.; Rahati, A. Enhanced GROMACS: toward a better numerical simulation framework. J. Mol. Model., 2019, 25(12), 355. doi: 10.1007/s00894-019-4232-z PMID: 31768713
  21. Gul, S.; Ahmad, S.; Ullah, A.; Ismail, S.; Khurram, M. Tahir ul Qamar, M.; Hakami, A.R.; Alkhathami, A.G.; Alrumaihi, F.; Allemailem, K.S. Designing a Recombinant Vaccine against Providencia rettgeri Using Immunoinformatics Approach. Vaccines (Basel), 2022, 10(2), 189. doi: 10.3390/vaccines10020189 PMID: 35214648
  22. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  23. Xu, H.; Zhang, Y.; Wang, P.; Zhang, J.; Chen, H.; Zhang, L.; Du, X.; Zhao, C.; Wu, D.; Liu, F.; Yang, H.; Liu, C. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm. Sin. B, 2021, 11(6), 1379-1399. doi: 10.1016/j.apsb.2021.03.024 PMID: 34221858
  24. Liu, C.; Yu, L.; Jiang, Y.; Gu, S.; Li, C.; Yin, W.; Zhou, Z. The possibility of polygonum cuspidatum against osteoarthritis based on network pharmacology and molecular docking. Curr Comput Aided Drug Des., 2023, 20, (2). doi: 10.2174/1573409919666230403114131
  25. Mao, X.; Xu, H.; Li, S.; Su, J.; Li, W.; Guo, Q.; Wang, P.; Guo, R.; Xiao, X.; Zhang, Y.; Yang, H. Exploring pharmacological mechanisms of Xueshuan-Xinmai-Ning tablets acting on coronary heart disease based on drug target-disease gene interaction network. Phytomedicine, 2019, 54, 159-168. doi: 10.1016/j.phymed.2018.09.018 PMID: 30668365
  26. Yang, J.; Wang, C.; Cheng, S.; Zhang, Y.; Jin, Y.; Zhang, N.; Wang, Y. Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer. Front. Genet., 2023, 13, 1094474. doi: 10.3389/fgene.2022.1094474 PMID: 36685851
  27. Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798. doi: 10.1093/nar/gku1205 PMID: 25428349
  28. Cuesta, S.A.; Mora, J.R.; Márquez, E.A. In silicoscreening of the drugbank database to search for possible drugs against SARS-CoV-2. Molecules, 2021, 26(4), 1100. doi: 10.3390/molecules26041100 PMID: 33669720
  29. Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Zhou, Z.; Han, L.; Karapetyan, K.; Dracheva, S.; Shoemaker, B.A.; Bolton, E.; Gindulyte, A.; Bryant, S.H. PubChem’s bioassay database. Nucleic Acids Res., 2012, 40(D1), D400-D412. doi: 10.1093/nar/gkr1132 PMID: 22140110
  30. Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415. doi: 10.1093/nar/30.1.412 PMID: 11752352
  31. Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med., 2018, 10(4), e1417. doi: 10.1002/wsbm.1417 PMID: 29474005
  32. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
  33. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30. doi: 10.1093/nar/28.1.27 PMID: 10592173
  34. Zhao, X.; Wang, L.; Chen, G. Joint covariate detection on expression profiles for identifying micrornas related to venous metastasis in hepatocellular carcinoma. Sci. Rep., 2017, 7(1), 5349. doi: 10.1038/s41598-017-05776-1 PMID: 28706271
  35. Lowery, S.A.; Sariol, A.; Perlman, S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe, 2021, 29(7), 1052-1062. doi: 10.1016/j.chom.2021.05.004 PMID: 34022154
  36. Park, S.H. An impaired inflammatory and innate immune response in COVID-19. Mol. Cells, 2021, 44(6), 384-391. doi: 10.14348/molcells.2021.0068 PMID: 34098591
  37. Wang, T.; Tian, J.; Jin, Y. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci. Rep., 2021, 11(1), 19488. doi: 10.1038/s41598-021-98998-3 PMID: 34593936
  38. Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; André, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res., 2022, 198, 105252. doi: 10.1016/j.antiviral.2022.105252 PMID: 35085683
  39. Niraj, N.; Mahajan, S.S.; Prakash, A.; Sarma, P.; Medhi, B. Paxlovid: A promising drug for the challenging treatment of SARS-COV-2 in the pandemic era. Indian J. Pharmacol., 2022, 54(6), 452-458. doi: 10.4103/ijp.ijp_291_22 PMID: 36722557
  40. Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Burley, S.K. RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci., 2020, 29(1), 52-65. doi: 10.1002/pro.3730 PMID: 31531901
  41. Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
  42. Xu, L.; Zhang, J.; Wang, Y.; Zhang, Z.; Wang, F.; Tang, X. Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Biosci. Rep., 2021, 41(2), BSR20203565. doi: 10.1042/BSR20203565 PMID: 33409535
  43. Wang, T.; Fan, L.; Feng, S.; Ding, X.; An, X.; Chen, J.; Wang, M.; Zhai, X.; Li, Y. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Sci. Rep., 2022, 12(1), 7430. doi: 10.1038/s41598-022-10769-w PMID: 35523810
  44. Mao, J.; Wang, G.; Yang, L.; Tan, L.; Tian, C.; Tang, L.; Fang, L.; Mu, Z.; Zhu, Z.; Li, Y. Combined network pharmacology and molecular docking to verify the treatment of type 2 diabetes with pueraria lobata radix and salviae miltiorrhizae radix. Comput. Math. Methods Med., 2023, 2023, 1-15. doi: 10.1155/2023/9150324 PMID: 36820318
  45. Ngo, S.T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D.H.; Vu, V.V. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5771-5780. doi: 10.1021/acs.jcim.0c00491 PMID: 32530282
  46. Beyeh, N.K. Nonappa; Liljeström, V.; Mikkilä, J.; Korpi, A.; Bochicchio, D.; Pavan, G.M.; Ikkala, O.; Ras, R.H.A.; Kostiainen, M.A. Crystalline cyclophane–protein cage frameworks. ACS Nano, 2018, 12(8), 8029-8036. doi: 10.1021/acsnano.8b02856 PMID: 30028590
  47. Hrdinova, J.; Fernández, D.I.; Ercig, B.; Tullemans, B.M.E.; Suylen, D.P.L.; Agten, S.M.; Jurk, K.; Hackeng, T.M.; Vanhoorelbeke, K.; Voorberg, J.; Reutelingsperger, C.P.M.; Wichapong, K.; Heemskerk, J.W.M.; Nicolaes, G.A.F. Structure-based cyclic glycoprotein ibα-derived peptides interfering with von willebrand factor-binding, affecting platelet aggregation under shear. Int. J. Mol. Sci., 2022, 23(4), 2046. doi: 10.3390/ijms23042046 PMID: 35216161
  48. Ghufran, M.; Ullah, M.; Khan, H.A.; Ghufran, S.; Ayaz, M.; Siddiq, M.; Abbas, S.Q.; Hassan, S.S.; Bungau, S. In-Silico lead druggable compounds identification against SARS COVID-19 main protease target from in-house, chembridge and zinc databases by structure-based virtual screening, molecular docking and molecular dynamics simulations. Bioengineering, 2023, 10(1), 100. doi: 10.3390/bioengineering10010100 PMID: 36671672
  49. Fattahi, A.; Koohsari, P.; Shadman, L.M.; Ghandi, K. The impact of the surface modification on tin-doped indium oxide nanocomposite properties. Nanomaterials (Basel), 2022, 12(1), 155. doi: 10.3390/nano12010155 PMID: 35010105
  50. Niu, X.; Liu, Q.; Xu, Z.; Chen, Z.; Xu, L.; Xu, L.; Li, J.; Fang, X. Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs). Nat. Commun., 2020, 11(1), 5496. doi: 10.1038/s41467-020-19260-4 PMID: 33127896
  51. Sinha, S.; Wang, S.M. Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput. Struct. Biotechnol. J., 2020, 18, 723-736. doi: 10.1016/j.csbj.2020.03.013 PMID: 32257056
  52. Das, K.C.; Konhar, R.; Biswal, D.K. Fasciola gigantica vaccine construct: An In silico approach towards identification and design of a multi-epitope subunit vaccine using calcium binding EF-hand proteins. BMC Immunol., 2023, 24(1), 1. doi: 10.1186/s12865-022-00535-y PMID: 36604615
  53. Yang, K.; Jin, H.; Gao, X.; Wang, G.C.; Zhang, G.Q. Elucidating the molecular determinants in the process of gastrin C-terminal pentapeptide amide end activating cholecystokinin 2 receptor by Gaussian accelerated molecular dynamics simulations. Front. Pharmacol., 2023, 13, 1054575. doi: 10.3389/fphar.2022.1054575 PMID: 36756145
  54. He, H.P.; Luo, M.; Cao, Y.L.; Lin, Y.X.; Zhang, H.; Zhang, X.; Ou, J.Y.; Yu, B.; Chen, X.; Xu, M.; Feng, L.; Zeng, M.S.; Zeng, Y.X.; Gao, S. Structure of Epstein-Barr virus tegument protein complex BBRF2-BSRF1 reveals its potential role in viral envelopment. Nat. Commun., 2020, 11(1), 5405. doi: 10.1038/s41467-020-19259-x PMID: 33106493
  55. Abel, Y.; Paiva, A.C.F.; Bizarro, J.; Chagot, M.E.; Santo, P.E.; Robert, M.C.; Quinternet, M.; Vandermoere, F.; Sousa, P.M.F.; Fort, P.; Charpentier, B.; Manival, X.; Bandeiras, T.M.; Bertrand, E.; Verheggen, C. NOPCHAP1 is a PAQosome cofactor that helps loading NOP58 on RUVBL1/2 during box C/D snoRNP biogenesis. Nucleic Acids Res., 2021, 49(2), 1094-1113. doi: 10.1093/nar/gkaa1226 PMID: 33367824
  56. Rohner, N.A.; Nguyen, D.; von Recum, H.A. Affinity effects on the release of non-conventional antifibrotics from polymer depots. Pharmaceutics, 2020, 12(3), 275. doi: 10.3390/pharmaceutics12030275 PMID: 32192207
  57. Kwofie, S.K.; Broni, E.; Teye, J.; Quansah, E.; Issah, I.; Wilson, M.D.; Miller, W.A., III; Tiburu, E.K.; Bonney, J.H.K. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput. Biol. Med., 2019, 113, 103414. doi: 10.1016/j.compbiomed.2019.103414 PMID: 31536833
  58. Zheng, S.; Zhou, B.; Yang, L.; Hou, A.; Zhang, J.; Yu, H.; Kuang, H.; Jiang, H.; Yang, L. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from Duhuo Jisheng decoction on osteoarthritis in rats. J. Ethnopharmacol., 2023, 315, 116679. doi: 10.1016/j.jep.2023.116679 PMID: 37257711
  59. Kang, X.; Jin, D.; Jiang, L.; Zhang, Y.; Zhang, Y.; An, X.; Duan, L.; Yang, C.; Zhou, R.; Duan, Y.; Sun, Y.; Lian, F. Efficacy and mechanisms of traditional Chinese medicine for COVID-19: A systematic review. Chin. Med., 2022, 17(1), 30. doi: 10.1186/s13020-022-00587-7 PMID: 35227280
  60. Cava, C.; Bertoli, G.; Castiglioni, I. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation. Future Virol., 2021, 16(8), 527-542. doi: 10.2217/fvl-2020-0392 PMID: 34306168
  61. Ye, M.; Luo, G.; Ye, D.; She, M.; Sun, N.; Lu, Y.J.; Zheng, J. Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia. Phytomedicine, 2021, 85, 153401. doi: 10.1016/j.phymed.2020.153401 PMID: 33191068
  62. Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother. Res., 2021, 35(3), 1230-1236. doi: 10.1002/ptr.6887 PMID: 33034398
  63. Tronina, T.; Mrozowska, M.; Bartmańska, A.; Popłoński, J.; Sordon, S.; Huszcza, E. Simple and rapid method for wogonin preparation and its biotransformation. Int. J. Mol. Sci., 2021, 22(16), 8973. doi: 10.3390/ijms22168973 PMID: 34445678
  64. Liu, Y.; Zhang, H.G. Vigilance on new-onset atherosclerosis following SARS-CoV-2 infection. Front. Med., 2021, 7, 629413. doi: 10.3389/fmed.2020.629413 PMID: 33553222
  65. Zanza, C.; Romenskaya, T.; Manetti, A.C.; Franceschi, F.; La Russa, R.; Bertozzi, G.; Maiese, A.; Savioli, G.; Volonnino, G.; Longhitano, Y. Cytokine storm in COVID-19: Immunopathogenesis and therapy. Medicina, 2022, 58(2), 144. doi: 10.3390/medicina58020144 PMID: 35208467
  66. Generali, D.; Bosio, G.; Malberti, F.; Cuzzoli, A.; Testa, S.; Romanini, L.; Fioravanti, A.; Morandini, A.; Pianta, L.; Giannotti, G.; Viola, E.M.; Giorgi-Pierfranceschi, M.; Foramitti, M.; Tira, R.A.; Zangrandi, I.; Chiodelli, G.; Machiavelli, A.; Cappelletti, M.R.; Giossi, A.; De Giuli, V.; Costanzi, C.; Campana, C.; Bernocchi, O.; Sirico, M.; Zoncada, A.; Molteni, A.; Venturini, S.; Giudici, F.; Scaltriti, M.; Pan, A. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int. J. Infect. Dis., 2021, 104(104), 433-440. doi: 10.1016/j.ijid.2020.12.073 PMID: 33385581
  67. Lin, H.; Wang, X.; Liu, M.; Huang, M.; Shen, Z.; Feng, J.; Yang, H.; Li, Z.; Gao, J.; Ye, X. Exploring the treatment of COVID ‐19 with Yinqiao powder based on network pharmacology. Phytother. Res., 2021, 35(5), 2651-2664. doi: 10.1002/ptr.7012 PMID: 33452734
  68. Zhang, R.; Chen, X.; Zuo, W.; Ji, Z.; Qu, Y.; Su, Y.; Yang, M.; Zuo, P.; Ma, G.; Li, Y. Inflammatory activation and immune cell infiltration are main biological characteristics of SARS-CoV-2 infected myocardium. Bioengineered, 2022, 13(2), 2486-2497. doi: 10.1080/21655979.2021.2014621 PMID: 35037831
  69. Kircheis, R.; Planz, O. Could a lower toll-like receptor (TLR) and NF-κB activation due to a changed charge distribution in the spike protein be the reason for the lower pathogenicity of omicron? Int. J. Mol. Sci., 2022, 23(11), 5966. doi: 10.3390/ijms23115966 PMID: 35682644
  70. Kavianpour, M.; Saleh, M.; Verdi, J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res. Ther., 2020, 11(1), 404. doi: 10.1186/s13287-020-01849-7 PMID: 32948252
  71. Jonny, J.; Putranto, T.A.; Sitepu, E.C.; Irfon, R. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo? Expert Rev. Vaccines, 2022, 21(8), 1111-1120. doi: 10.1080/14760584.2022.2080658 PMID: 35593184
  72. Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2020, 53, 25-32. doi: 10.1016/j.cytogfr.2020.05.003 PMID: 32446778
  73. Toor, S.M.; Saleh, R.; Sasidharan Nair, V.; Taha, R.Z.; Elkord, E. T‐cell responses and therapies against SARS‐CoV‐2 infection. Immunology, 2021, 162(1), 30-43. doi: 10.1111/imm.13262 PMID: 32935333
  74. Yan, W.; Chen, D.; Bigambo, F.M.; Wei, H.; Wang, X.; Xia, Y. Differences of blood cells, lymphocyte subsets and cytokines in COVID-19 patients with different clinical stages: A network meta-analysis. BMC Infect. Dis., 2021, 21(1), 156. doi: 10.1186/s12879-021-05847-9 PMID: 33557779
  75. Carnicer-Lombarte, A.; Chen, S.T.; Malliaras, G.G.; Barone, D.G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol., 2021, 9, 622524. doi: 10.3389/fbioe.2021.622524 PMID: 33937212
  76. Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol., 2020, 108(1), 17-41. doi: 10.1002/JLB.3COVR0520-272R PMID: 32534467
  77. Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 255. doi: 10.1038/s41392-021-00679-0 PMID: 34234112
  78. Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol., 2020, 127, 104370. doi: 10.1016/j.jcv.2020.104370 PMID: 32344321
  79. Coomes, E.A.; Haghbayan, H. Interleukin‐6 in Covid‐19: A systematic review and META‐ANALYSIS. Rev. Med. Virol., 2020, 30(6), 1-9. doi: 10.1002/rmv.2141 PMID: 32845568
  80. Nagashima, S.; Mendes, M.C.; Camargo, M.A.P.; Borges, N.H.; Godoy, T.M.; Miggiolaro, A.F.R.S.; da Silva Dezidério, F.; Machado-Souza, C.; de Noronha, L. Endothelial dysfunction and thrombosis in patients with COVID-19—brief report. Arterioscler. Thromb. Vasc. Biol., 2020, 40(10), 2404-2407. doi: 10.1161/ATVBAHA.120.314860 PMID: 32762443

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers